LPVR-DUO in an Airborne Helicopter

In-Flight VR

Imagine soaring through the skies as a pilot, testing the limits of a helicopter’s capabilities while feeling the rush of wind and turbulence. Now imagine that you don’t see the real world outside and the safe landing pad that your helicopter is approaching but a virtual reality (VR) scene where you are homing in on a ship in high seas. The National Research Council Canada (NRC) and Defence Research and Development Canada (DRDC) have brought this experience to life with their groundbreaking Integrated Reality In-Flight Simulation (IRIS).

IRIS is not your ordinary simulator; for one, it’s not sitting on a hexapod, it’s airborne. It’s a variable-stability helicopter based on the Bell 412 that can behave like other aircraft and can simulate varying weather conditions; combine that with a VR environment and you have a tool that allows safely training operations in the most adverse conditions. In particular it is used for Ship Helicopter Operating Limitations (SHOL) testing.

Mission-Critical Application with LPVR-DUO

The LPVR-DUO system is what makes VR possible on this constantly moving platform. This cutting-edge AR/VR tracking system seamlessly merges the inertial measurements taken by the headset with the helicopter’s motion data and a camera system mounted inside the cabin to provide the correct visuals to the pilot. The challenges of using cameras to track the VR headset inside the tight environment of the helicopter while lighting conditions are ever-changing are overcome by using an ART SmartTrack 3 system. This system follows an arrangement of reflective markers attached to the pilot’s helmet. The VR headset is attached to the helmet in such a way that the pilot can wear it as if it were a pair of night vision goggles. Put together, this allows displaying a virtual world to the pilot, even in the most extreme maneuvers.

To ensure an authentic experience, the IRIS system incorporates real-time turbulence models, meticulously crafted from wind tunnel trials. These turbulence effects are seamlessly integrated into the aircraft’s motion and into the VR scene, providing pilots with precise proprioceptive and vestibular cues. It’s a symphony of technology and innovation in the world of aviation testing.

In-Cockpit Implementation

The optical tracking system relies on highly reflective marker targets on the helmet to track movement in three dimensions. Initially, only five markers were installed, strategically placed for optimal tracking. But the pursuit of perfection led NRC to create custom 3D-printed low-reflectivity helmet molds, allowing them to mount a dozen small passive markers. This significantly improved tracking reliability in various lighting conditions and allowed for a wider range of head movement.

Recently, NRC put this remarkable concept to the test with actual flight trials. The response from pilots was nothing short of exhilarating. They found the system required minimal adaptation, exhibited no noticeable lag, and, perhaps most impressively, didn’t induce any motion sickness. Even the turbulence effects felt incredibly realistic. Surprisingly, the typical VR drawbacks, such as resolution and field of view limitations, had minimal impact, especially during close-in shipboard operations. It’s safe to say that IRIS has set a new standard for effective and immersive aviation testing.

Publication of Results

The NRC team presented their results at the Vertical Flight Society’s 79th Annual Form in two papers [1] and [2] and they also have a blog post on their site.

NOTE: Image contents courtesy of Aerospace Research Centre, National Research Council of Canada (NRC) – Ottawa, ON, Canada

New Features in LPVR Version 4.8

Introduction

Our LPVR series is the primary solution on the market for users who want to expand the scope of their virtual reality or mixed reality headsets by using external tracking systems such as ART, OptiTrack or Vicon. Use cases are varied and range from entertainment (location based VR) and engineering use cases (ergonomic studies in AR) to helicopters and virtual cars which are actually driving on Japan’s public roads. At LP-Research, we have continuously developed the LPVR series of solutions over the past years. We have expanded its scope, added support for new headsets, and included new functions.

The image below shows an LPVR installation based on design content created by automotive prototyping company Phiaro Inc. in Tokyo, Japan.

The latest release is version 4.8.0, which we released in June of 2023.  As usual, it comes in two flavors:

  • LPVR-CAD which supports stationary use-cases, and
  • LPVR-DUO which is our variant for moving platforms, be they cars or simulators.

We support all the major tethered headsets (SteamVR headsets, Pimax, Varjo).  We also support Meta Quest series headsets and the Vive Focus 3 with our LPVR-Air series of products. If you have a current support contract, you are eligible for an update.

A Brief Overview of LPVR-CAD and LPVR-DUO

It’s maybe best to summarize some of the capabilites that our products add to the various commercial headsets.  For more details, feel free to visit the product pages for LPVR-CAD and LPVR-DUO, respectively:

  • Cover arbitrary large areas and have VR scenes taking place in them
  • Have an arbitrary number of users interact in such a space
  • Do VR/AR inside a car or any other moving platform
  • Track your user to sub-millimeter precision together with any number of props with no perceivable latency
  • Use SteamVR controllers without the Lighthouses

We can do this because our proprietary sensor fusion algorithms allow us to combine the measurements of high-precision motion tracking camera systems with the measurements of the headset’s Inertial Measurement Unit (IMU). For the case of a moving platform, we can additionally incorporate data from an IMU installed on the platform to provide for a responsive, accurate performance also in those circumstances.

New Features

For a short overview of the changes in each version, please refer to our Release Notes. Here we will give some highlights and dig into some details. LPVR 4.8.0 is the result of continuous development in the half year or so since our previous releases.

New GUI Organization and Visual LPVR-DUO Configuration Interface

The most obvious change to users will be the reorganized GUI which streamlines the setup, completely doing away with the need to enter any JSON codes, while coming on a more cleanly organized surface. Especially for our LPVR-DUO users this means a vast simplification of the system.  We have maintained the old configuration interface as an option to guarantee compatibility with existing workflows, but we don’t think that users will have to resort to it. Please let us know if your experience is different. If your headset tracking body is already calibrated, you should now be able to setup LPVR-DUO with some five mouse clicks.

When you load up the configuration, it will look something like this. Note that you no longer are led to a JSON editor where you manually have to enter the configuration. Instead you are greeted by a friendly, informative GUI.

At the bottom of the page, you will see links to the Documentation, a Calibration screen, and an Expert Mode, basically the old JSON editor. The Calibration screen is used for the setup of the Platform IMU and simplifies it down to a few mouse clicks in the usual case. No more looking for some quaternion values in log files! Please check out the corresponding documentation.

Varjo Headset Eye Point Adjustments

Together with Varjo and with cooperation of several of our customers we were able to identify and correct some imprecisions in the handling of the headset’s position. These would show up as small coordinate mismatches between the optical tracking coordinates and the coordinates reported to VRED or Unity etc. Additionally, this would lead to some unnatural motion of AR overlays, especially when turning the head.

Optimal performance requires updating both Varjo Base to at least version 3.10 and LPVR to at least version 4.8.0.  Updating Varjo Base fixes the underlying issue, updating LPVR corrects the interfacing.  If you cannot update Varjo Base, you can still update LPVR-CAD-Varjo to version 4.8.0 and enable a workaround.  To do so, please open the Varjo Base configuration GUI on the System tab and then add patchPositionBug=true in the field labeled Additional Settings followed by clicking the “Submit” button. Note while this works around the issue in Varjo Base before version 3.10, it is not recommended to use this option with the updated versions of Varjo Base.

Varjo Configuration Refinements

Different environments call for different setups.  Some of our users use administrator accounts, others have multiple users but want them to use the same configuration.  We have updated the way we organize on-disc storage of the configuration to address these possibilities.  In particular you can now establish a system-wide configuration default, and you can override it per-user.  In the case of LPVR-CAD, additionally, the configuration is entered inside Varjo Base by default, but to allow users greater flexibility, it has always been possible to use our web interface or files on disk to perform the configuration.  While these are not the preferred choice, it was previously not possible to see from Varjo Base whether the on-disk configuration is in use.  We have added a prominent status information that points to the configuration, as in the screen shot below.  In the case of LPVR-DUO the configuration is always loaded from disk as the added flexibility of our configuration page is required, but in LPVR-CAD the user will have to opt in. We describe the process briefly below.

The user can prepare a global, system-wide default configuration in %ProgramData%/Varjo/VarjoTracking/Plugins/LP-Research/LPVR-CAD-Varjo/configuration/settings.json. Changes on the configuration page will not change this configuration, but will instead be written to the per-user configuration %LocalAppData%/LP-Research/LPVR-CAD-Varjo/settings.json. If either file is present, the configuration inside Varjo Base will be ignored and the user can use their web browser to configure LPVR-CAD. In this way, an administrator can prepare a configuration that works with the setup, and any user can customize it to their needs. For LPVR-DUO, there is no configuration interface inside Varjo Base, instead the user will always point their web browser to http://localhost:7119. Here, a system-wide default configuration can be placed in %ProgramData%/Varjo/VarjoTracking/Plugins/LP-Research/LPVR-DUO-Varjo/configuration/settings.json, and a per-user override can sit in %LocalAppData%/LP-Research/LPVR-DUO-Varjo/settings.json. The web interface will always update this per-user file.

LPVR-DUO Demonstration

In order to familiarize you with the neighborhood of our office and, more importantly, to show what can be done with LPVR-DUO, here is an in-car mixed reality demonstration. The video screens on the glove box may look almost real but they are an overlay imposed on the see-through camera image of a Varjo XR-3 using an out-of-the-box LPVR-DUO set. Notice how the screens firmly remain in place during turns of the user’s head as well as turns of the car itself, even when diving into some of the steeper roads of the Motoazabu area in central Tokyo.

Large-scale VR Application Case: the Holodeck Control Center

The AUDI Holodeck

LPVR interaction

Our large-scale VR solution allows any SteamVR-based (e.g. Unity, Unreal, VRED) Virtual Reality software to seamlessly use the HTC VIVE headset together with most large-room tracking systems available on the market (OptiTrack, Vicon, ART). It enables easy configuration and fits into the SteamVR framework, minimizing the effort needed to port applications to large rooms.

One of our first users, Lightshape, have recently released a video showing what they built with our technology.  They call it the Holodeck Control Center, an application which creates multi-user collaborative VR spaces. In it users can communicate and see the same scene whether they are the same real room or in different locations. The installation showcased in the video is used by German car maker Audi to study cars that haven’t been built yet.

Our technology is essential in order to get the best VR experience possible on the 15m × 15m of the main VR surface, combining optical tracking data and IMU measurements to provide precise and responsive positioning of the headsets.  Please have a look at Lightshape’s video below.

Ready for the HTC Vive Pro

In the near future, this installation will be updated to the HTC Vive Pro which our software already supports. The increased pixel density of this successor of the HTC Vive will make the scenes look even more realistic. The resolution is high enough to actually read the various panels once you are in the drivers seat! Besides that, we are also busy studying applications of the front-facing cameras of the Vive Pro in order to improve multi-user interaction.

Optical-Inertial Sensor Fusion

Optical position tracking and inertial orientation tracking are well established measurement methods. Each of these methods has its specific advantages and disadvantages. In this post we show an opto-inertial sensor fusion algorithm that joins the capabilities of both to create a capable system for position and orientation tracking.

How It Works

The reliability of position and orientation data provided by an optical tracking system (outside-in or inside-out) can for some applications be compromised by occlusions and slow system reaction times. In such cases it makes sense to combine optical tracking data with information from an inertial measurement unit located on the device. Our optical-intertial sensor fusion algorithm implements this functionality for integration with an existing tracking system or for the development of a novel system for a specific application case.

The graphs below show two examples of how the signal from an optical positioning system can be improved using inertial measurements. Slow camera framerates or occasional drop-outs are compensated by information from the integrated inertial measurement unit, improving the overall tracking performance.

Combination of Several Optical Trackers

For a demonstration, we combined three NEXONAR IR trackers and an LPMS-B2 IMU, mounted together as a hand controller. The system allows position and orientation tracking of the controller with high reliability and accuracy. It combines the strong aspects of outside-in IR tracking with inertial tracking, improving the system’s reaction time and robustness against occlusions.

Optical-Inertial Tracking in VR

The tracking of virtual reality (VR) headsets is one important area of application for this method. To keep the user immersed in a virtual environment, high quality head tracking is essential. Using opto-inertial tracking technology, outside-in tracking as well as inside-out camera-only tracking can be significantly improved.

Our VR Headset In The News

Our booth caught TIA's eye.

Our booth caught TIA’s eye.

Tech in Asia Tokyo 2016 is over but we still get great responses from the fair. It was such an amazing day, thank you once more! Moreover TIA reported on us again, this time in their round-up of interesting booths. It was our new Virtual Reality headset that caught their eye because it made our booth “more attractive and interactive”. Indeed, many visitors were eager to get their hands on it.

If you would like to know more about how we use sensor fusion for VR headset tracking, watch our demo video over here. This is a just a preview, we will give you more updates in the next couple of weeks. In the meantime, read the round-up coverage on the Tech in Asia blog over here.

1 2