# LPMS-B Reference Manual

Version 1.1.0



# © 2013 LP-RESEARCH

www.lp-research.com

# I. INTRODUCTION

Welcome to the LP-RESEARCH Motion Sensor Bluetooth version (LPMS-B) User's Manual!

In this manual we will try to explain everything you need to know to set up the LPMS-B hardware, install and use its software, as well as getting started with integrating the sensor within your own software project. We have put a lot of effort into making the LPMS-B a great product, but we are always eager to improve and work on new developments. So, if you have any further question or have any comment regarding this manual please feel free to contact us anytime.

For more information on the LPMS-B or other product series, please refer to the flyers, datasheets or user manuals, available from the LP-RESEARCH Corporation website at the following address: http://www.lp-research.com.

# II. TABLE OF CONTENTS

| I.   | INTRODUCTION2                          |
|------|----------------------------------------|
| II.  | TABLE OF CONTENTS                      |
| III. | REVISION HISTORY                       |
| IV.  | DEVICE OVERVIEW7                       |
| N    | Measurement Output7                    |
| Г    | Fechnical Background                   |
|      | Communication Methods                  |
|      |                                        |
| C    | Calibration                            |
| N    | Magnetic Field Distortion Compensation |
| S    | Size and Run-times                     |
| A    | Application Areas                      |
| V.   | DEVICE SPECIFICATIONS10                |
| VI.  | CONNECTOR CONFIGURATION                |
|      | PMS-B Connector                        |
|      |                                        |
| I    | LPMS-B Recharger Connector             |
| VII  | I. OPERATION                           |
| F    | Powering Up and Operation Modes        |
| ŀ    | Host Device Communication   12         |
| Γ    | Data Acquisition                       |
|      | Raw Sensor Data                        |
|      | Orientation Data                       |
| F    | Filter Settings                        |
|      | Filter Modes                           |
|      | Magnetometer Correction Setting        |
|      | Acceleration Compensation Setting      |
|      | Gyroscope Threshold                    |
|      | Gyroscope Auto-calibration Function16  |
|      | Low Pass Filter Setting                |

| Trade-offs and Limitations                                   | 17 |
|--------------------------------------------------------------|----|
| Calibration Methods                                          | 17 |
| Gyroscope Calibration                                        | 17 |
| Magnetometer Calibration                                     |    |
| Accelerometer Calibration                                    | 19 |
| VIII. COMMUNICATION PROTOCOL                                 | 20 |
| Establishing a Connection                                    | 20 |
| Basic Protocol Introduction                                  | 20 |
| GET Commands                                                 | 20 |
| SET Commands                                                 | 20 |
| LpBUS Protocol                                               | 20 |
| Packet Format                                                | 20 |
| Data Format in a Packet Data Field                           | 21 |
| Protocol Commands List                                       | 22 |
| Acknowledged and Not-acknowledged Identifier                 | 22 |
| Firmware Update and In-Application-Programmer Upload Command | 22 |
| Configuration and Status Command                             | 23 |
| Mode Switching Command                                       | 25 |
| Data Transmission Command                                    | 25 |
| Register Value Save and Reset Command                        |    |
| Reference Setting and Offset Reset Command                   |    |
| Self-Test Command                                            |    |
| IMU ID Setting Command                                       |    |
| Gyroscope Settings Command                                   |    |
| Accelerometer Settings Command                               |    |
| Magnetometer Settings Command                                | 31 |
| Filter Settings Command                                      |    |
| CAN Bus Settings Command (Only for LPMS-CU module)           |    |
| Additional Settings                                          | 35 |
| Example Communication                                        |    |
| Request Sensor Configuration                                 |    |
| Request Gyroscope Range                                      |    |
| Set Accelerometer Range                                      | 40 |
| Read Sensor Data                                             | 41 |

| IX.     | OpenMAT LIBRARY43                          |
|---------|--------------------------------------------|
| 0       | verview43                                  |
|         | Introduction                               |
|         | Application Installation                   |
| $L_{j}$ | omsControl Software Operation              |
|         | Overview                                   |
|         | GUI Elements                               |
|         | Device Discovery                           |
|         | Connecting and Disconnecting a Device      |
|         | Sensor Parameter Adjustment                |
|         | Reset of Orientation and Reference Vectors |
|         | How to Upload New Firmware                 |
| Т       | ne LpSensor Library                        |
|         | Building Your Application                  |
|         | Important Classes                          |
|         | Example Code                               |
| X.      | MECHANICAL INFORMATION60                   |
| L       | PMS-B Dimension60                          |
| L       | PMS-B Recharger Dimension60                |
| L       | PMS-B OEM Dimension60                      |
| L       | PMS-B and Recharger Connection60           |

# **III. REVISION HISTORY**

| Date        | Revision | Changes                                                         |  |  |
|-------------|----------|-----------------------------------------------------------------|--|--|
| 01-May-2012 | 1.0      | Initial release.                                                |  |  |
| 01-Sep-2012 | 1.0.11   | The introduction part of LPMS-CU has been removed, and          |  |  |
|             |          | summarized into another separated document. The whole           |  |  |
|             |          | manual includes only the information of LPMS-B.                 |  |  |
| 17-Sep-2012 | 1.0.12   | - Updates to reflect the latest changes in the firmware command |  |  |
|             |          | set.                                                            |  |  |
|             |          | - OpenMAT library section contains more details on how to use   |  |  |
|             |          | the binary LpSensor library.                                    |  |  |
|             |          | - Section on how to compile LpmsControl was removed.            |  |  |
| 25-Feb-2013 | 1.1.0    | - Correction of some bugs of system sampling timing.            |  |  |
|             |          | - GUI has been optimized by adding more tool bars.              |  |  |
|             |          | - Up to 4 sensor 3 D visualization view modes are added.        |  |  |
|             |          | - Altitude calculation by using pressure sensor is included.    |  |  |
|             |          | - Another two Euler filter modes are added.                     |  |  |
|             |          | - Low pass filter setting is added.                             |  |  |

# IV. DEVICE OVERVIEW

#### **Measurement Output**

The LP-RESEARCH Motion Sensor Bluetooth version (LPMS-B) is a wireless inertial measurement unit. We designed the unit to be as small as possible so that it can be used in a wide range of applications from measuring the human motion to the stabilization of ground vehicles or air-planes. The unit can measure orientation in 360 degrees about all three global axes. Measurements are taken digitally and transmitted to a data analysis system in the form of orientation quaternion or Euler angles. Whereas Euler angles are the traditional way of describing the orientation of an object, quaternion allow orientation measurement without encountering the so-called Gimbal's lock by using a four-element vector to express orientation around all axes without being limited by singularities. A more in-depth explanation of the quaternion output of the LPMS-B will follow later on in this manual.

In addition, a pressure sensor is selectable on the LPMS-B for some specific applications, such as GPS navigation enhancement, indoor and outdoor navigation, vertical velocity indication, and so on.

#### **Technical Background**

To measure the orientation of an object, the sensor internally uses three different sensing units. These units are micro-electro-mechanical system (MEMS) sensors that integrate complex mechanical and electronic capabilities on a miniaturized device. The units used in the LPMS-B for orientation determination are a 3-axis gyroscope (detecting angular velocity), a 3-axis accelerometer (detecting the directing of the earth's gravity field) and a 3-axis magnetometer to measure the direction of the earth magnetic field. In principle orientation data about all three room axes can be determined by integrating the angular velocity data from the gyroscope. However through the integration step the error from the gyroscope measurements, although it might be very small, has an exponential influence on the calculation result. Therefore we correct the orientation data from the gyroscope with information from the accelerometer (roll and pitch angles) and magnetometer (yaw angle) to calculate orientation information of high accuracy and stability while guaranteeing fast sampling rates. We combine the orientation information from the three sensing units using a complementary filter in conjunction with an extended Kalman filter (EKF). The Kalman filter allows us to reduce the measurement error especially in case of regular movements (e.g. human gait analysis, vehicle vibration analysis etc.). Sampling rates of the sensor can be adjusted to up to 300 Hz internal measurement frequency.

#### **Communication Methods**

For the transmission of the data from the sensor to a data logging unit we applied the wireless Bluetooth technology. For communication protocols we rely on commonly used open standard protocols: a modified ModBus protocol (LpBUS)

#### Calibration

For accurate operation the sensor needs to be calibrated. The calibration procedure includes the determination of the gyroscope data offset and gain, gyroscope movement threshold, accelerometer misalignment, accelerometer offset and gain, and magnetometer interference bias and gain. As the earth magnetic field can be distorted by metal or electromagnetic sources within the vicinity of the sensor, the re-calibration of the magnetic sensor and re-calculation of the magnetic reference vector of the sensor might be necessary when using the sensor in different location or under varying experiment environments. Later in this manual we will describe in detail the necessary calibration procedures and measures to be taken to guarantee the accuracy of the measurements taken by the sensor. We tried to automate the calibration procedures as far as possible inside the firmware of the sensor to make the usage as convenient as possible for the users.

## Magnetic Field Distortion Compensation

Additionally to the established method of compensating a distorted earth magnetic field by re-calibrating the magnetometer, the LPMS-B offers either completely switching off the magnetometer compensation of the gyroscope data or selectively switching the compensation modes between: dynamics; weak; medium; and strong, in places where an earth magnetic field outside the normal limits is being detected. We implemented a special algorithm that allows switching between operation with different modes of magnetometer compensation and without magnetometer compensation without any inconsistencies in the orientation detection. For further adjustment of the calibration parameters to the sensor environment a temperature sensor and pressure sensor have been integrated on the LPMS-B. Data from these indicators can be utilized by the user to correct raw data measurements from the LPMS-B sub-sensors.

## Size and Run-times

During the development of the LPMS-B we tried to make the unit as small as possible to allow a large variety of application areas. For size reduction the actual sensing units and microcontroller hardware are integrated into one main-board with 6-layers PCB design. The communication hardware interface is implemented on an extension-board, which is stacked above the main-board.

Each LPMS-B consists of these two boards as a whole unit. The main-board contains the actual sensor devices and manages the sensor data acquisition. The extension-board contains the Bluetooth hardware to communicate with data logging devices. In case of the wireless version additionally to the circuit boards, the LPMS-B case also contains a rechargeable battery. The battery is exchangeable and allows independent run times of up to 10 hours.

# **Application Areas**

The LPMS-B is suitable for a wide range of applications. One of the applications focuses for a small scale motion sensor is the measurement of human movement for injury rehabilitation, gait cycle analysis, surgical skill training and evaluation etc. The sensor can also be effectively used in the field of virtual reality, navigation, robotics, or for measuring vehicle dynamics. If more than one sensor is used for a sensor network the motion of complex objects as necessary in cinematic motion capturing or animation movie production is possible.

# V. DEVICE SPECIFICATIONS

Currently we have 2 different packages of LPMS-B sensor. They are respectively named as LPMS-B standard version and OEM version. Please see the below table of the summary of sensor specification.

| Parameters             | LPMS-B (standard version)                                         | LPMS-B (OEM version)                  |  |
|------------------------|-------------------------------------------------------------------|---------------------------------------|--|
| Size                   | 45x 37 x 20 mm                                                    | 28 x 20 x 12 mm                       |  |
| Weight                 | 34 g                                                              | 7 g                                   |  |
| Bluetooth              | 2.1 + EDR, 2.41                                                   | 2 - 2.484 GHz                         |  |
| Communication distance | < 18                                                              | 3 m                                   |  |
| Orientation Range      | 360°abou                                                          | t all axes                            |  |
| Resolution             | < 0.0                                                             | 05°                                   |  |
| Accuracy               | < 2°(dynamic)                                                     | ,< 0.5°(static)                       |  |
| Accelerometer          | 3-axis, ±20 / ±40 / ±80                                           | $0 / \pm 160 \text{ m/s}^2$ , 16 bits |  |
| Gyroscope              | 3-axis, ±250 / ±500                                               | $/\pm 2000^{\circ}$ , 16 bits         |  |
| Magnetometer           | 3-axis, $\pm 130 \sim \pm 810$ uT, 16 bits                        |                                       |  |
| Pressure sensor        | 300 ~ 1100 hPa *                                                  |                                       |  |
| Data output format     | Raw data / Euler angle / Quaternion                               |                                       |  |
| Sampling rate          | $0 \sim 300  \text{Hz}$                                           |                                       |  |
| Latency                | 20ms                                                              |                                       |  |
| Power consumption      | 290 mW @ 3.3 V                                                    |                                       |  |
| Power supply           | Lithium battery > 10 h                                            | $3.6 \sim 18 \text{ V DC}$            |  |
|                        | (3.7 V @ 800mAh)                                                  |                                       |  |
| Temperature range      | $-20 \sim +60 {}^{\rm O}{\rm C}$ $-40 \sim +80 {}^{\rm O}{\rm C}$ |                                       |  |
| Connector              | Micro USB, type B                                                 |                                       |  |
| Software               | C++ library for Windows, Java library for Android, LpmsControl    |                                       |  |
|                        | software and Open Motion Analysis Toolkit (OpenMAT) for           |                                       |  |
|                        | Windows.                                                          |                                       |  |

\*The pressure sensor is optional and can be added on LPMS-B, which depends on the requirement from users. Please contact us for more information about this.

# VI. CONNECTOR CONFIGURATION

# **LPMS-B** Connector

| Pin description: | Pin No.                                                                       | 1             | 2             | 3            | 4             | 5            |
|------------------|-------------------------------------------------------------------------------|---------------|---------------|--------------|---------------|--------------|
|                  | Function                                                                      | Vcc           | None          | None         | None          | GND          |
| Connector type:  | Micro-USB type B female                                                       |               |               |              |               |              |
| Remark:          | This connector is used for recharging the LPMS-B battery. Power is internally |               |               |              |               |              |
|                  | supplied to the LPMS-B by a rechargeable battery contained inside the LPMS-B  |               |               |              |               |              |
|                  | case. To recharg                                                              | e the sensor  | , we supply   | a specific r | echarger call | led LPMS-B   |
|                  | recharger. More                                                               | detail inform | mation of the | e recharger  | can be foun   | d out in the |
|                  | following section                                                             | l.            |               |              |               |              |

# LPMS-B Recharger Connector

| Port #1          | Pin                                                                                             | 1        | 2    | 3    | 4    | 5   |
|------------------|-------------------------------------------------------------------------------------------------|----------|------|------|------|-----|
| Pin description: | Function                                                                                        | +5V      | None | None | None | GND |
| Connector type:  | Micro-USB type                                                                                  | B female |      |      |      |     |
| Port #2          | Pin                                                                                             | 1        | 2    | 3    | 4    | 5   |
| Pin description: | Function                                                                                        | Vcc      | None | None | None | GND |
| Connector type:  | USB type A fem                                                                                  | ale      |      |      |      |     |
| Remark:          | The connector "Port #1" needs to be connected to a USB power source with at                     |          |      |      |      |     |
|                  | least 500mA output current capacity. The connector "Port #2" as the output of                   |          |      |      |      |     |
|                  | the recharger needs to be connected with the LPMS-B for recharging the battery.                 |          |      |      |      |     |
|                  | We supply two cables with USB-A to MicroUSB-B conversion for the                                |          |      |      |      |     |
|                  | connections between USB power source $\rightarrow$ recharger $\rightarrow$ LPMS-B. A schematics |          |      |      |      |     |
|                  | drawing of the connection configuration among USB power source, LPMS-B                          |          |      |      |      |     |
|                  | and recharger is shown in section "X. MECHANICAL INFORMATION".                                  |          |      |      |      |     |
|                  | -                                                                                               |          |      |      |      |     |
| Charging Status  | Green LED                                                                                       | Red LED  |      | St   | atus |     |
|                  |                                                                                                 |          |      |      |      |     |

| Green LED | Red LED | Status                                    |
|-----------|---------|-------------------------------------------|
| On        | Off     | The battery is being recharged.           |
| Off       | On      | The battery has been fully charged.       |
| On        | On      | The recharger is not connected to LPMS-B. |

**Remark:** If the recharger is powered on and has not been connected to LPMS-B after about 5 minutes, both LEDs will be on to indicate the connection error. The total recharging time normally takes 5 to 6 hours.

# VII. OPERATION

#### **Powering Up and Operation Modes**

The LPMS-B sensor is switched on by pressing the power button for duration of  $\sim$  1s. The red and green LEDs visible on the top of the LPMS-B light up when operation power is supplied to the device. And after about 5 seconds, the green color status LED will start blinking with an interval of 1s, which means the sensor is ready for connection. There are 3 different modes for operation:

| Mode           | Description                                                           |  |  |  |
|----------------|-----------------------------------------------------------------------|--|--|--|
| Command mode   | In command mode the functionality of the sensor is accessed           |  |  |  |
|                | command-by-command. Also data is transferred from the sensor to       |  |  |  |
|                | the user by a special command. This mode is suitable for making       |  |  |  |
|                | adjustments to the parameter settings of the sensor and synchronized  |  |  |  |
|                | data-transfer.                                                        |  |  |  |
| Streaming mode | In streaming mode data is continuously sent from the sensor to the    |  |  |  |
|                | host. This mode is suitable for simple and high-speed data            |  |  |  |
|                | acquisition. Sensor parameters cannot be set in this mode.            |  |  |  |
| Sleep mode     | Sleep mode is the power-saving state of the sensor. The sensor can be |  |  |  |
|                | woken up by switching into streaming mode or command mode. In         |  |  |  |
|                | this mode no data can be read from the sensor.                        |  |  |  |

IMPORTANT: The sensor is set to streaming mode in default after power on and connection established. Command Mode and Sleep Mode can be switched by sending commands over the communication interface. The modification of operation mode can be saved into the sensor memory. We will specify the available commands in detail later on in this manual.

# **Host Device Communication**

To connect to the sensor, a Bluetooth connection request must be sent to the Bluetooth MAC address of LPMS-B. This MAC address as the sensor device ID can be checked by using the LpmsControl Software or OpenMAT library, which will be illustrated in detail at section "*IX*. *OpenMAT LIBRARY*".

Users should connect to the Bluetooth module of LPMS-B using a standard class 2 Bluetooth host interface that supports SPP (serial protocol profile). A key-code for pairing is not required. Establishing a connection with the sensor usually takes around 2 to 5 seconds. The Bluetooth device name of the sensor for device discovery is 'LPMS-B'. The baudrate of the connection is set to 9216000 bit/s by default.

**OPERATION** 

## **Data Acquisition**

For data acquisition, all the communications with the device must be according to the LpBUS protocol, which is introduced in detail in section "*VIII. COMMUNICATION PROTOCOL*".

#### **Raw Sensor Data**

The LPMS-B IMU contains three MEMS sensors: A gyroscope, an accelerometer and a magnetometer. The raw data from all three of these sensors can be accessed by the host system based on the LpBUS protocol. This data can be used to check if the current acquisition range of the sensors is sufficient and if the different sensors generate correct output. Users can also implement their own sensor fusion algorithms using the raw sensor data values. Sensor range and data sampling speed can be set by sending commands to the firmware. Details will be explained later on in this manual at section of "*VIII. COMMUNICATION PROTOCOL*".

The LPMS-B is calibrated in default, but it might be necessary to recalibrate the sensors if the measurement environment changes (different ambient electromagnetic field, strong temperature change). Please refer to the following sections for a detailed introduction of sensor calibration methods.

#### **Orientation Data**

The LPMS-B has two orientation output formats: quaternion and Euler angle. As the Euler angle representation of orientation is subject to the Gimbal lock, we strongly recommend the users to use the quaternion representation for the orientation calculation.

## **Filter Settings**

Data from the three MEMS sensors is combined using an extended complementary Kalman filter (LP-Filter) to calculate the orientation data, like quaternion and Euler angle. To make the filter operate correctly, its parameters need to be set in an appropriate way.

#### **Filter Modes**

First, the mode of the filter needs to be selected, which can be set by LpmsControl software or the firmware commands. The following filter modes are available:

| Filter mode    | Description                                                                 |
|----------------|-----------------------------------------------------------------------------|
| Gyroscope only | Only the data from the gyroscope is used to calculate the orientation data  |
|                | output from the sensor. In this mode the orientation data can be calculated |
|                | very quickly and with little noise. However, a strong drift of the acquired |

|                 | values can occur due to the inherent bias problem of gyroscope. This mode          |  |  |
|-----------------|------------------------------------------------------------------------------------|--|--|
|                 | should therefore be only used for cases in which a frequent reset of the           |  |  |
|                 | zero-angle position is allowed.                                                    |  |  |
| Gyroscope +     | The orientation data that is calculated from the gyroscope is corrected by the     |  |  |
| accelerometer   | accelerometer data based on quaternion representation. The accelerometer           |  |  |
|                 | acquires accurate information about the roll and pitch orientation regarded        |  |  |
|                 | with the earth gravity vector. The result of the correction is therefore           |  |  |
|                 | orientation information that has very little error on the roll and pitch axis, the |  |  |
|                 | yaw axis however is still affected by the drift of the un-corrected gyroscope      |  |  |
|                 | data.                                                                              |  |  |
|                 | This mode might be significant useful when there is a strong magnetic              |  |  |
|                 | interference that can hardly be efficiently calibrated exiting around the sensor   |  |  |
|                 |                                                                                    |  |  |
| 9               | and only the roll and pitch information is interest to the users.                  |  |  |
| Gyroscope +     | Orientation data from the gyroscope that has been corrected by the                 |  |  |
| accelerometer + | accelerometer output as previously described is additionally modified by the       |  |  |
| magnetometer    | direction of the earth magnetic field. This results in accurate orientation        |  |  |
| (default mode)  | information for all three axes. This mode delivers good speed and accuracy         |  |  |
|                 | for roll, pitch and yaw. In this mode, (un-calibrated) distortions of the earth    |  |  |
|                 | magnetic will affect the accuracy of the orientation measurement.                  |  |  |
| Accelerometer + | Orientation is directly calculated by the combination of the data from             |  |  |
| magnetometer    | accelerometer and magnetometer using Euler representation. Therefore it has        |  |  |
| (Euler only)    | the singularity problem at certain orientations. Based on the information of       |  |  |
|                 | gravity in the vertical frame and the geomagnetic field vector in horizontal       |  |  |
|                 | frame, the roll, pitch and yaw angle can be achieved based on the readings         |  |  |
|                 | from accelerometer and magnetometer. This mode is suitable for the                 |  |  |
|                 | application of small motion and limited magnetic distortion.                       |  |  |
| Gyroscope +     | The orientation data that is calculated from the gyroscope is corrected by the     |  |  |
| accelerometer   | accelerometer data based on Euler representation. Therefore it has the             |  |  |
| (Euler only)    | singularity problem at certain orientations. The accelerometer acquires            |  |  |
| (Letter only)   | accurate information about the roll and pitch orientation regarded with the        |  |  |
|                 | earth gravity vector. The result of the correction is therefore orientation        |  |  |
|                 |                                                                                    |  |  |
|                 | information that has very little error on the roll and pitch axis, the yaw axis    |  |  |
|                 | however is still affected by the drift of the un-corrected gyroscope data.         |  |  |
|                 | This mode might be significant useful when there is a strong magnetic              |  |  |
|                 | interference that can hardly be efficiently calibrated exiting around the sensor   |  |  |
|                 | and only the roll and pitch information is interest to the users.                  |  |  |

#### **Magnetometer Correction Setting**

The amount by which the magnetometer corrects the orientation output of the sensor can be controlled by the magnetic correction settings. The following options are selectable through LpmsControl or directly through the firmware commands.

| Parameter presets | Description                                                            |
|-------------------|------------------------------------------------------------------------|
| Dynamic (default) | The value "Dynamic" means the magnetic correction inside the           |
|                   | filter is performed dynamically together with the acceleration data    |
|                   | according to the variance of magnetic interference. This parameter     |
|                   | set is suitable for the situation when the magnetic interference       |
|                   | keeps changing.                                                        |
| Weak              | The value "weak" means the magnetic correction inside the filter       |
|                   | has little impact on the orientation output. Sensor orientation is     |
|                   | calculated mainly from the acceleration / gyroscope data. This         |
|                   | parameter set is suitable for situations when strong magnetic          |
|                   | interference that cannot be compensated through calibration appear     |
|                   | regularly.                                                             |
| Medium            | With the "medium" correction setting the impact of the                 |
|                   | magnetometer readings is still relatively weak, but stronger than in   |
|                   | "weak" mode. This mode should be suitable for environments with        |
|                   | occasional irregular field distortions.                                |
| Strong            | In this mode the magnetometer readings have a strong direct impact     |
|                   | on the orientation output. It can be used in environments with a       |
|                   | calibrate-able constant field distortion or in "clean" fields (outside |
|                   | buildings with no metal parts or strong power sources in the           |
|                   | vicinity of the sensor). Yaw orientation measurement in world          |
|                   | coordinates will be most accurate in this mode.                        |

#### **Acceleration Compensation Setting**

The amount by which the accelerometer corrects the orientation output of the sensor can be controlled by both linear acceleration and centripetal acceleration settings. The following options are selectable through LpmsControl or directly through the firmware commands.

| Parameter presets | Description                                                        |
|-------------------|--------------------------------------------------------------------|
| Off               | There is no linear acceleration compensation for the sensor fusion |

## **Linear Acceleration Correction Settings**

|                  | in this mode. This parameter set is suitable for situations when<br>there is no linear acceleration appears.                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weak             | The value "weak" means the linear acceleration correction inside<br>the filter has little dynamic impact on the orientation output. This<br>parameter set is suitable for situations when linear acceleration                                      |
|                  | appears regularly and slightly.                                                                                                                                                                                                                    |
| Strong (default) | The value "Strong" means the linear acceleration correction inside<br>the filter has strong dynamic impact on the orientation output. This<br>parameter set is suitable for situations when linear acceleration<br>appears regularly and strongly. |

#### **Rotational Acceleration Correction Settings**

| Parameter presets | Description                                                     |
|-------------------|-----------------------------------------------------------------|
| Disable           | There is no rotational acceleration compensation for the sensor |
|                   | fusion in this mode.                                            |
| Enable (default)  | There is dynamic rotational acceleration compensation for the   |
|                   | sensor fusion in this mode.                                     |

#### **Gyroscope Threshold**

The input from the gyroscope can be thresholded so that the sensor orientation data is only updated when the sensor is moved. This threshold is automatically determined during gyroscope calibration.

| Parameter preset  | Description                       |
|-------------------|-----------------------------------|
| Enable            | Switches gyroscope threshold on.  |
| Disable (default) | Switches gyroscope threshold off. |

#### **Gyroscope Auto-calibration Function**

The selection of the following parameter values allows the users to enable or disable the gyroscope auto calibration function. In auto calibration mode the filter is automatically detects if the sensor is moving or not. If the sensor stays still for a certain time, the currently sampled gyroscope data will be used to re-calculate the gyroscope offset. This function is significant useful when the user is using the "Gyroscope only" filter mode, and most the time of the system stays still. Using this function will reduce the drift problem of the gyroscope.

| Parameter preset  | Description                            |
|-------------------|----------------------------------------|
| Enable            | Switch gyroscope auto-calibration on.  |
| Disable (default) | Switch gyroscope auto-calibration off. |

**OPERATION** 

#### Low Pass Filter Setting

The selection of the following parameter values allows the users to further implement a simple low pass filter for smoothing the output data after the sensor fusion algorithm. The low pass filter is based on the following formula:  $X_i = (1-a)^* X_{i-1} + a^* U_i$ , where *a* is the coefficient listed in the following table, *U* is the input.

| Parameter preset | Description            |
|------------------|------------------------|
| Off (default)    | No filter implemented. |
| 0.1              | a = 0.1                |
| 0.05             | <i>a</i> = 0.05        |
| 0.01             | <i>a</i> = 0.01        |
| 0.005            | <i>a</i> = 0.005       |
| 0.001            | a = 0.001              |

## **Trade-offs and Limitations**

Although we have put (and still do) a lot of effort into the design of the LPMS-B, there are a few limitations of the sensor that need to be taken into account when using the device. The accuracy of the sensor is limited by the electronic noise level of the MEMS sensors used in the LPMS-B. Although the sensor data acquisition speeds for gyroscope, accelerometer and magnetometer are more than 500Hz, but the data output frequency of the whole system is limited to a certain frequency (up to 300Hz). The parameters of the filter that fuses the data from the gyroscope, magnetometer and accelerometer need to be adjusted well, in order to achieve measurements with maximum accuracy. Furthermore, in case the sensor is used in changing environments, the sensor occasionally might need to be re-calibrated. The greatest drawback of the measurement principle of the sensor certainly is its affectability by a deformed earth magnetic field (in the vicinity of hard / soft iron, electric motors etc.). In such situations the use of the filter mode and parameters of the filter must be well considered. In case of LPMS-B, battery run-times should be taken into account when considering the sensor for a new application. Furthermore, the wireless Bluetooth connection puts a limit on the maximum range and the maximum data update frequency.

# **Calibration Methods**

#### **Gyroscope Calibration**

When the sensor is resting the output data of the gyroscope should be around zero. The raw data from the gyroscope sensor has a constant bias of a certain value. To determine this value please follow the following calibration procedure:

| Step | Description                                                                             |
|------|-----------------------------------------------------------------------------------------|
| 1    | If it is not already switched on, power up the LPMS-B device.                           |
| 2    | Put the sensor in a resting (non-moving) position.                                      |
| 3    | Connect to the sensor.                                                                  |
| 4    | Trigger the gyroscope calibration procedure either through a firmware command or using  |
|      | the LpmsControl software.                                                               |
| 5    | The gyroscope calibration will take around 30s. After that the gyroscope is calibrated, |
|      | normal operation can be resumed.                                                        |

Additionally to the gyroscope bias, the gyroscope threshold value will be adjusted during this calibration procedure. By default the use of the gyroscope threshold is disabled. It can be enabled by sending a firmware command or using the LpmsControl software.

#### **Magnetometer Calibration**

During the magnetometer calibration procedure several parameters are to be determined: magnetometer bias and gain on the X, Y and Z-axis; length and direction of the geomagnetic field vector. In most environments the earth magnetic field is influenced by electromagnetic noise sources such as power lines, metal etc. As a result the magnetic field becomes de-centered and deformed. During the magnetometer calibration the amount of de-centering and deformed as well as the average length of the magnetic field vector is calculated. These parameters are tuned automatically using the calibration procedures in the LpmsControl software:

| Step | Description                                                                               |
|------|-------------------------------------------------------------------------------------------|
| 1    | If it is not already switched on, power up the LPMS-B device.                             |
| 2    | If it is not already connected, connect to the sensor.                                    |
| 3    | Start the magnetometer calibration using the LpmsControl software.                        |
| 4    | Rotate the sensor around its yaw axis for 2~3 rotations.                                  |
| 5    | Rotate the sensor around its pitch axis for 2~3 rotations.                                |
| 6    | Rotate the sensor around its roll axis for 2~3 rotations.                                 |
| 7    | Rotate the sensor randomly to acquire data as much as possible from different directions. |
| 8    | The calibration procedure finished automatically after 30 seconds. After that the         |
|      | magnetometer has been calibrated.                                                         |

IMPORTANT: Euler angle transmission must be turned on for the magnetometer calibration to succeed.

#### **Accelerometer Calibration**

The misalignment of the accelerometer relative to the casing of the LPMS-B device is expressed by the so called misalignment matrix. Using the LpmsControl software this misalignment matrix can be calibrated by the user. In the mean time, the offsets of the accelerometer can be also evaluated. Whereas the usage of the LpmsControl software is explained in more detail in the "*LpmsControl Software Operation*" section, the calibration procedure consists of the following steps:

| Step | Description                                                                           |
|------|---------------------------------------------------------------------------------------|
| 1    | If it is not already switched on, power up the LPMS-B device.                         |
| 2    | If it is not already connected, connect to the sensor.                                |
| 3    | Start the accelerometer misalignment calibration using the LpmsControl software. See  |
|      | "LpmsControl Software Operation" section.                                             |
| 4    | Fix the sensor to a horizontal surface with the Z-axis pointing upwards.              |
| 5    | Fix the sensor to a horizontal surface with the Z-axis pointing downwards.            |
| 6    | Fix the sensor to a horizontal surface with the X-axis pointing upwards.              |
| 7    | Fix the sensor to a horizontal surface with the X-axis pointing downwards.            |
| 8    | Fix the sensor to a horizontal surface with the Y-axis pointing upwards.              |
| 9    | Fix the sensor to a horizontal surface with the Y-axis pointing downwards.            |
| 10   | After finishing the above procedures the accelerometer misalignment matrix and offset |
|      | values will be re-calculated. This finishes the accelerometer calibration.            |

# VIII. COMMUNICATION PROTOCOL

## **Establishing a Connection**

Before starting to communicate with the LPMS-B, users need to establish a connection over Bluetooth according to the introduction at section *"Host Device Communication"*.

# **Basic Protocol Introduction**

The communication packet has two basic command types, GET and SET, that are sent from a host (PC, mobile data logging unit etc.) to a client (LPMS-B device). Later in this manual we will show a description of all supported commands to the sensor, their type, contained data etc.

#### **GET Commands**

Data from the client is read using GET requests. A GET request usually contains no data. The answer from the client to a GET request contains the requested data.

#### **SET Commands**

Data registers of the client are written using SET requests. A SET command from the host contains the data to be set. The answer from the client is an ACK command feedback for a successful write, or NACK command feedback for a failure to set the register occurred.

# **LpBUS Protocol**

#### **Packet Format**

All communication with the LPMS-B works with a common protocol called LpBUS. The protocol is based on the industry standard MODBUS that we slightly adapted to be most suitable for our purpose. Each packet sent during the communication is based on this protocol, which is described in the following table:

| Byte no. | Name               | Description                                                         |
|----------|--------------------|---------------------------------------------------------------------|
| 0        | Packet start (3Ah) | Mark of the beginning of a data packet.                             |
| 1        | OpenMAT ID         | Contains the low byte of the OpenMAT ID of the sensor to be         |
|          | byte 1             | communicated with. The default value of this ID is 1. The host      |
|          |                    | sends out a GET / SET request to a specific LPMS-B sensor by        |
|          |                    | using this ID, and the client answers to request also with the same |
|          |                    | ID. This ID can be adjusted by sending a SET command to the         |

|             |                          | sensor firmware.                                                                                 |
|-------------|--------------------------|--------------------------------------------------------------------------------------------------|
| 2           | OpenMAT ID               | High byte of the OpenMAT ID of the sensor.                                                       |
|             | byte 2                   |                                                                                                  |
| 3           | Command no.              | Contains the low byte of the command to be performed by the data                                 |
|             | byte 1                   | transmission.                                                                                    |
| 4           | Command no.              | High byte of the command number.                                                                 |
|             | byte 2                   |                                                                                                  |
| 5           | Packet data length       | Contains the low byte of the packet data length to be transmitted in                             |
|             | byte 1                   | the packet data field.                                                                           |
| 6           | Packet data length       | High byte of the data length to be transmitted.                                                  |
|             | byte 2                   |                                                                                                  |
| x           | Packet data              | If data length $\boldsymbol{n}$ not equal to zero, $\boldsymbol{x} = 6+1, 6+26+\boldsymbol{n}$ . |
|             | ( <b><i>n</i></b> bytes) | Otherwise $\boldsymbol{x} =$ none.                                                               |
|             |                          | This data field contains the packet data to be transferred with the                              |
|             |                          | transmission if the data length not equals to zero, otherwise the                                |
|             |                          | data field is empty.                                                                             |
| 7+ <i>n</i> | LRC byte 1               | The low byte of LRC check-sum. To ensure the integrity of the                                    |
|             |                          | transmitted data the LRC check-sum is used. It is calculated in the                              |
|             |                          | following way:                                                                                   |
|             |                          | LRC = sum(packet byte no. 1 to no. $x$ )                                                         |
|             |                          | The calculated LRC is usually compared with the LRC transmitted                                  |
|             |                          | from the remote device. If the two LRCs are not equal, and error is                              |
|             |                          | reported.                                                                                        |
| 8+n         | LRC byte 2               | High byte of LRC check-sum.                                                                      |
| 9+n         | Termination byte 1       | 0Dh                                                                                              |
| 10+n        | Termination byte 2       | 0Ah                                                                                              |

## Data Format in a Packet Data Field

Generally data is sent in little-endian format, low order byte first, high order byte last. Data in the data fields of a packet can be encoded in several ways, depending on the type of information to be transmitted. In the following we list the most common data types. Other command-specific data types are explained in the command reference.

| Transmission order        | 0       | 1 | 2 | 3       |
|---------------------------|---------|---|---|---------|
| Integer word, byte number | 0 (LSB) | 1 | 2 | 3 (MSB) |

## <u>32-bit integer values (LENGTH = 4 bytes)</u>

| Transmission order              | 0       | 1 | 2  | 3       |
|---------------------------------|---------|---|----|---------|
| Vector component 1, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |
| Transmission order              | 4       | 5 | 6  | 7       |
| Vector component 2, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |
| Transmission order              | 8       | 9 | 10 | 11      |
| Vector component 3, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |

# <u>32-bit integer 3-component vector (LENGTH = 12 bytes)</u>

#### 32-bit float value encoded as integer (LENGTH = 4 bytes)

| Transmission order                 | 0       | 1 | 2 | 3       |
|------------------------------------|---------|---|---|---------|
| Integer-encoded float, byte number | 0 (LSB) | 1 | 2 | 3 (MSB) |

## <u>32-bit float 3-component vector (LENGTH = 12 byte)</u>

| Transmission order              | 0       | 1 | 2  | 3       |
|---------------------------------|---------|---|----|---------|
| Vector component 1, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |
| Transmission order              | 4       | 5 | 6  | 7       |
| Vector component 2, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |
| Transmission order              | 8       | 9 | 10 | 11      |
| Vector component 3, byte number | 0 (LSB) | 1 | 2  | 3 (MSB) |

# **Protocol Commands List**

# Acknowledged and Not-acknowledged Identifier

| Command No.      | Command description                                                             |
|------------------|---------------------------------------------------------------------------------|
| (decimal values) |                                                                                 |
| 0                | REPLY_ACK (acknowledged). Confirms a successful SET command.                    |
| 1                | REPLY_NACK (not-acknowledged) Reports an error during processing a SET command. |

# Firmware Update and In-Application-Programmer Upload Command

| 2 | Start the firmware update process.                                             |
|---|--------------------------------------------------------------------------------|
|   | IMPORTANT: By not correctly uploading a firmware file the sensor might become  |
|   | in-operable. In normal cases please use the LpmsControl software to upload new |
|   | firmware. Also please only use firmware packages that have been authorized by  |
|   | LP-RESEARCH.                                                                   |

|   | Packet data:       | Firmware data                                |  |
|---|--------------------|----------------------------------------------|--|
|   | Data format        | Firmware binary file separated into 256 byte |  |
|   |                    | chunks for each update packet.               |  |
|   | Macro name:        | UPDATE_FIRMWARE                              |  |
|   | Response:          | ACK (success) or NACK (error) for each       |  |
|   |                    | transmitted packet.                          |  |
|   |                    |                                              |  |
| 3 | "RESERVED"         | This command is reserved by LP-RESEARCH.     |  |
|   | Start the in-appli | ation programmer (IAP) update process.       |  |
|   | Packet data:       | IAP data                                     |  |
|   | Data format        | IAP binary file separated into 256 byte      |  |
|   |                    | chunks for each update packet.               |  |
|   | Macro name:        | UPDATE_IAP                                   |  |
|   | Response:          | ACK (success) or NACK (error) for each       |  |
|   |                    | transmitted packet.                          |  |

# **Configuration and Status Command**

| 4            | Get the current value of | of the confid | guration register of the sensor. The configuration word |
|--------------|--------------------------|---------------|---------------------------------------------------------|
| Т            |                          | -             |                                                         |
|              |                          |               | parameters are set by their respective SET commands.    |
|              | E.g. SET_TRANSMIT        | _DATA for     | defining which data is transmitted from the sensor.     |
|              | Packet data:             | Configura     | tion word. Each bit represents the state of one         |
|              |                          | configura     | tion parameter.                                         |
|              | Return format:           | 32-bit inte   | eger                                                    |
|              |                          | Bit           | <b>Reported State / Parameter</b>                       |
|              |                          | 0 - 2         | Stream frequency setting (see                           |
|              |                          |               | SET_STREAM_FREQ)                                        |
| 3-8 Reserved |                          |               |                                                         |
|              |                          | 9             | Pressure data transmission enabled                      |
|              |                          | 10            | Magnetometer data transmission enabled                  |
|              |                          | 11            | Accelerometer data transmission enabled                 |
|              |                          | 12            | Gyroscope data transmission enabled                     |
|              |                          | 13            | Temperature output enabled                              |
|              |                          | 14            | Heave motion output enabled                             |
|              |                          | 15            | Reserved                                                |
|              |                          | 16            | Angular velocity output enabled                         |
|              |                          | 17            | Euler angle data transmission enabled                   |

|   |                                                        | 18                                                                                                                                                                        | Quaternion orientation output enabled                                                                                                                                                                                                                                                                                                                                      |
|---|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                        | 19                                                                                                                                                                        | Output enabled                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                        | 20                                                                                                                                                                        | Dynamic magnetometer correction enabled                                                                                                                                                                                                                                                                                                                                    |
|   |                                                        | 21                                                                                                                                                                        | Linear acceleration output enabled                                                                                                                                                                                                                                                                                                                                         |
|   |                                                        | 22                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                        | 23                                                                                                                                                                        | Gyroscope threshold enabled                                                                                                                                                                                                                                                                                                                                                |
|   |                                                        | 24                                                                                                                                                                        | Magnetometer compensation enabled                                                                                                                                                                                                                                                                                                                                          |
|   |                                                        | 25                                                                                                                                                                        | Accelerometer compensation enabled                                                                                                                                                                                                                                                                                                                                         |
|   |                                                        | 26                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                        | 27                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                        | 28                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                        | 29                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                        | 30                                                                                                                                                                        | Gyroscope auto-calibration enabled                                                                                                                                                                                                                                                                                                                                         |
|   |                                                        | 31                                                                                                                                                                        | Reserved                                                                                                                                                                                                                                                                                                                                                                   |
|   | Macro name:                                            | GET_CC                                                                                                                                                                    | DNFIG                                                                                                                                                                                                                                                                                                                                                                      |
|   | Wacio name.                                            |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |
| 5 |                                                        | e of the statu                                                                                                                                                            | is register of the LPMS-B device. The status word can                                                                                                                                                                                                                                                                                                                      |
| 5 |                                                        | e of the statu                                                                                                                                                            | as register of the LPMS-B device. The status word can                                                                                                                                                                                                                                                                                                                      |
| 5 | Get the current value                                  |                                                                                                                                                                           | is register of the LPMS-B device. The status word can<br>dicator. Each bit represents the state of one status                                                                                                                                                                                                                                                              |
| 5 | Get the current value<br>ONLY be read.                 |                                                                                                                                                                           | dicator. Each bit represents the state of one status                                                                                                                                                                                                                                                                                                                       |
| 5 | Get the current value<br>ONLY be read.                 | Status inc                                                                                                                                                                | dicator. Each bit represents the state of one status                                                                                                                                                                                                                                                                                                                       |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete                                                                                                                                                    | dicator. Each bit represents the state of one status                                                                                                                                                                                                                                                                                                                       |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int                                                                                                                                      | dicator. Each bit represents the state of one status<br>er.<br>teger                                                                                                                                                                                                                                                                                                       |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br><b>Bit</b>                                                                                                                        | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state                                                                                                                                                                                                                                                                                    |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0                                                                                                                          | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled                                                                                                                                                                                                                                                            |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0<br>1                                                                                                                     | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled                                                                                                                                                                                                                                     |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0<br>1<br>2                                                                                                                | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled                                                                                                                                                                                                               |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br><b>Bit</b><br>0<br>1<br>2<br>3                                                                                                    | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on                                                                                                                                                                                   |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0<br>1<br>2<br>3<br>4                                                                                                      | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on<br>Reserved                                                                                                                                                                       |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                 | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on<br>Reserved<br>Gyroscope initialization failed                                                                                                                                    |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind<br>paramete<br>32-bit int<br>Bit<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                            | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on<br>Reserved<br>Gyroscope initialization failed                                                                                                              |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind         paramete         32-bit int         Bit         0         1         2         3         4         5         6         7                                | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on<br>Reserved<br>Gyroscope initialization failed<br>Accelerometer initialization failed                                                                                             |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind         paramete         32-bit int         Bit         0         1         2         3         4         5         6         7         8                      | dicator. Each bit represents the state of one status<br>er.<br>teger<br>Indicated state<br>COMMAND mode enabled<br>STREAM mode enabled<br>SLEEP mode enabled<br>Gyroscope calibration on<br>Reserved<br>Gyroscope initialization failed<br>Accelerometer initialization failed<br>Magnetometer initialization failed                                                       |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind         paramete         32-bit int         Bit         0         1         2         3         4         5         6         7         8         9            | dicator. Each bit represents the state of one status<br>teger Indicated state COMMAND mode enabled STREAM mode enabled SLEEP mode enabled Gyroscope calibration on Reserved Gyroscope initialization failed Accelerometer initialization failed Magnetometer initialization failed Pressure sensor initialization failed Gyroscope unresponsive                            |
| 5 | Get the current value<br>ONLY be read.<br>Packet data: | Status ind         paramete         32-bit int         Bit         0         1         2         3         4         5         6         7         8         9         10 | dicator. Each bit represents the state of one status<br>teger Indicated state COMMAND mode enabled STREAM mode enabled SLEEP mode enabled Gyroscope calibration on Reserved Gyroscope initialization failed Accelerometer initialization failed Nagnetometer initialization failed Pressure sensor initialization failed Gyroscope unresponsive Accelerometer unresponsive |

|             | 14       | Set broadcast frequency failed |
|-------------|----------|--------------------------------|
|             | 15-31    | reserved                       |
| Macro name: | GET_STAT | US                             |

# Mode Switching Command

| 6 | Switch to stream                                                | ning mode. In this mode data is continuously streamed from the sensor, |  |  |
|---|-----------------------------------------------------------------|------------------------------------------------------------------------|--|--|
|   | and all other                                                   | commands cannot be performed until the sensor receives the             |  |  |
|   | GOTO_COMMA                                                      | AND_MODE command.                                                      |  |  |
|   | Packet data:                                                    | none                                                                   |  |  |
|   | Macro name:                                                     | GOTO_STREAM_MODE                                                       |  |  |
|   | <b>Response:</b>                                                | ACK (success) or NACK (error)                                          |  |  |
|   |                                                                 |                                                                        |  |  |
| 7 | Switch to comm                                                  | nand mode. In command mode the user can issue commands to the          |  |  |
|   | firmware to perfe                                               | orm calibration, set parameters etc.                                   |  |  |
|   | Packet data:                                                    | none                                                                   |  |  |
|   | Macro name:                                                     | GOTO_COMMAND_MODE                                                      |  |  |
|   | Response:                                                       | ACK (success) or NACK (error)                                          |  |  |
|   |                                                                 |                                                                        |  |  |
| 8 | Switch to sleep r                                               | node. The purpose of the sleep mode is to reduce the power consumption |  |  |
|   | of the sensor. O                                                | nce in sleep mode, no commands can be issued to the sensor until it is |  |  |
|   | woken up by switching back into command mode or streaming mode. |                                                                        |  |  |
|   | Packet data:                                                    | none                                                                   |  |  |
|   | Macro name:                                                     | GOTO_SLEEP_MODE                                                        |  |  |
|   | Response:                                                       | ACK (success) or NACK (error)                                          |  |  |
| I | -                                                               |                                                                        |  |  |

## **Data Transmission Command**

| 9 | Get the latest set of sense                                                             | sor data. The format of the sensor data depends on the transmission              |  |  |  |
|---|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|   | settings (SET_TRANS                                                                     | settings (SET_TRANSMIT_DATA). The currently set format can be retrieved with the |  |  |  |
|   | sensor configuration word.                                                              |                                                                                  |  |  |  |
|   | IMPORTANT: In the cu                                                                    | nrrent version of the firmware calibrated accelerometer data as well             |  |  |  |
|   | as calibrated magnetom                                                                  | eter data will always be transmitted. As these values are necessary              |  |  |  |
|   | for the calibration of the sensor, they can at the moment not be switched off.          |                                                                                  |  |  |  |
|   | This format is also used in streaming mode to continuously send data from the sensor to |                                                                                  |  |  |  |
|   | the host.                                                                               |                                                                                  |  |  |  |
|   | Packet data:                                                                            | Sensor data. The data always has the same order. Depending on                    |  |  |  |
|   |                                                                                         | the enabled transmission data, chunks are inserted or left out.                  |  |  |  |

|    | Return format:       | Raw sens         | or data chunk                                  |                                                      |
|----|----------------------|------------------|------------------------------------------------|------------------------------------------------------|
|    |                      | Chunk            | Data type                                      | Sensor data                                          |
|    |                      | number           |                                                |                                                      |
|    |                      | 1                | Float                                          | Timestamp (ms)                                       |
|    |                      | 2                | Float 3-vector                                 | Calibrated gyroscope data<br>[deg/s]                 |
|    |                      | 3                | Float 3-vector                                 | Calibrated accelerometer<br>data [m/s <sup>2</sup> ] |
|    |                      | 4                | Float 3-vector                                 | Calibrated magnetometer<br>data [µT]                 |
|    |                      | 5                | Float 3-vector                                 | Angular velocity [deg/s]                             |
|    |                      | 6                | Float 4-vector                                 | Orientation quaternion<br>[normalized]               |
|    |                      | 7                | Float 3-vector                                 | Euler angle data [deg.]                              |
|    |                      | 8                | Float 3-vector                                 | Linear acceleration data [m/s <sup>2</sup> ]         |
|    |                      | 9                | Float                                          | Barometric pressure<br>[mPa]                         |
|    |                      | 10               | Float                                          | Heave motion [m] (if                                 |
|    |                      |                  |                                                | enabled)                                             |
|    | Macro name:          | GET_SEI          | NSOR_DATA                                      |                                                      |
| 10 | Set the data that is | transmitted from | n the sensor in stream                         | ning mode or when retrieving data                    |
|    | through the GET_S    | ENSOR_DATA       | a command.                                     |                                                      |
|    | Packet data:         | Data selectio    | n indicator                                    |                                                      |
|    | Data format:         | -                | -                                              | data chunks on (set the bit to 1)                    |
|    |                      |                  |                                                | me as in the configuration word                      |
|    |                      | (see SET_CC      |                                                |                                                      |
|    |                      | -                | Reported State / Para                          |                                                      |
|    |                      |                  | Pressure data transmis                         |                                                      |
|    |                      |                  | Magnetometer data tra                          |                                                      |
|    |                      |                  | Accelerometer data tra                         |                                                      |
|    |                      |                  | Gyroscope data transn<br>Temperature output en |                                                      |
|    |                      |                  | Heave motion output en                         |                                                      |
|    |                      |                  | Angular velocity output                        |                                                      |
|    |                      | 10 /             |                                                |                                                      |

|    |                       | 17             | Fuler angle data trans                                                              | mission enabled                |     |
|----|-----------------------|----------------|-------------------------------------------------------------------------------------|--------------------------------|-----|
|    |                       |                | Euler angle data transmission enabled         Quaternion orientation output enabled |                                | _   |
|    |                       | 18             | -                                                                                   |                                | _   |
|    |                       | 19             | Altitude output enable                                                              |                                | _   |
|    |                       | 21             | Linear acceleration or                                                              | itput enabled                  |     |
|    | Macro name:           |                | NSMIT_DATA                                                                          |                                |     |
|    | Response:             |                | cess) or NACK (error)                                                               |                                |     |
|    | Default value:        |                | -                                                                                   | cometer and quaternion data.   |     |
| 11 | C C                   |                | C                                                                                   | the host. Please note that hi  | •   |
|    |                       | -              |                                                                                     | limitations of the communicati | ion |
|    | interface. Check the  |                | drate before setting this                                                           | parameter.                     |     |
|    | Packet data:          | -              | quency identifier                                                                   |                                |     |
|    | Format:               | 32-bit integ   | ger                                                                                 |                                |     |
|    |                       | Frequenc       | y (Hz)                                                                              | Identifier                     |     |
|    |                       | 5              |                                                                                     | 5                              |     |
|    |                       | 10             |                                                                                     | 10                             |     |
|    |                       | 30             |                                                                                     | 30                             |     |
|    | 50                    |                |                                                                                     | 50                             |     |
|    |                       | 100            |                                                                                     | 100                            |     |
|    | 200                   |                |                                                                                     | 200                            |     |
|    |                       | 300            |                                                                                     | 300                            |     |
|    |                       | 500            |                                                                                     | 500                            |     |
|    | Macro name:           | SET_STR        | EAM_FREQ                                                                            |                                |     |
|    | <b>Response:</b>      | ACK (succ      | cess) or NACK (error)                                                               |                                |     |
|    | Default value:        | 100 Hz         |                                                                                     |                                |     |
| 12 | Get the current roll  | angle in radia | ans.                                                                                |                                |     |
|    | Packet data:          | Roll angle     |                                                                                     |                                |     |
|    | <b>Return format:</b> | 32-bit integ   | ger coded float value.                                                              |                                |     |
|    | Macro name:           | GET_ROL        | L                                                                                   |                                |     |
| 13 | Get the current pitch | n angle in rac | lians.                                                                              |                                |     |
|    | Packet data:          | Pitch angle    | 2                                                                                   |                                |     |
|    | Return format:        | 32-bit integ   | ger coded float value.                                                              |                                |     |
|    | Macro name:           | GET_PITC       | CH                                                                                  |                                |     |
| 14 | Get the current yaw   | angle in radi  | ans.                                                                                |                                |     |

| Packet data:   | Yaw angle                         |
|----------------|-----------------------------------|
| Return format: | 32-bit integer coded float value. |
| Macro name:    | GET_YAW                           |

# **Register Value Save and Reset Command**

| 15 | Write the current | ly set parameters to flash memory.                                       |
|----|-------------------|--------------------------------------------------------------------------|
|    | Packet data:      | None                                                                     |
|    | Macro name:       | WRITE_REGISTERS                                                          |
|    | Response:         | ACK (success) or NACK (error)                                            |
|    |                   |                                                                          |
| 16 | Reset the LPMS    | parameters to factory default values. Please note that upon issuing this |
|    | command your c    | urrently set parameters will be erased.                                  |
|    | Packet data:      | none                                                                     |
|    | Macro name:       | RESTORE_FACTORY_VALUE                                                    |
|    | <b>Response:</b>  | ACK (success) or NACK (error)                                            |

# Reference Setting and Offset Reset Command

| 17 | Set the acceleron   | neter and magnetometer reference vectors.                                    |  |  |
|----|---------------------|------------------------------------------------------------------------------|--|--|
|    | Packet data:        | None                                                                         |  |  |
|    | Macro name:         | RESET_REFERENCE                                                              |  |  |
|    | Response:           | ACK (success) or NACK (error)                                                |  |  |
|    |                     |                                                                              |  |  |
| 18 | Set the orientation | on offset (the value that is subtracted from the acquired orientation value  |  |  |
|    | after a measurem    | ent) to the currently measured orientation. This effectively resets the zero |  |  |
|    | orientation of the  | e sensor to the current orientation.                                         |  |  |
|    | Packet data: none   |                                                                              |  |  |
|    | Macro name:         | SET_OFFSET                                                                   |  |  |
|    | Response:           | ACK (success) or NACK (error)                                                |  |  |

# **Self-Test Command**

| 19 | Initiate the self-test. During the self test the sensor automatically rotates about the three |                               |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
|    | room axes. To simulate realistic circumstances an artificial offset is applied to the         |                               |  |  |  |  |
|    | magnetometer an                                                                               | d the gyroscope values.       |  |  |  |  |
|    | Packet data:                                                                                  | Packet data: none             |  |  |  |  |
|    | Macro name: SELF_TEST                                                                         |                               |  |  |  |  |
|    | Response:                                                                                     | ACK (success) or NACK (error) |  |  |  |  |

# IMU ID Setting Command

| 20 | Set the OpenMAT I | D of the LPMS-B.              |
|----|-------------------|-------------------------------|
|    | Packet data:      | OpenMAT ID                    |
|    | Data format:      | 32-bit integer                |
|    | Macro name:       | SET_IMU_ID                    |
|    | Response:         | ACK (success) or NACK (error) |
|    | Default value:    | 1                             |
|    |                   |                               |
| 21 | Get the ID (OpenM | AT ID) of the device          |
|    | Packet data:      | The ID of the IMU device      |
|    | Return format:    | 32-bit integer                |
|    | Macro name:       | GET_IMU_ID                    |

# Gyroscope Settings Command

| 22 | Start the calibration procedure of the gyroscope sensor. Details of the gyroscop           |                                                 |                           |          |  |  |
|----|--------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|----------|--|--|
|    | calibration procedure are described in the Operation – Calibration Methods section of this |                                                 |                           |          |  |  |
|    | manual. The calibration takes about 30s.                                                   |                                                 |                           |          |  |  |
|    | Packet data: none                                                                          |                                                 |                           |          |  |  |
|    | Macro name:                                                                                | START_GYR_CALIE                                 | RATION                    |          |  |  |
|    | Response:                                                                                  | ACK (success) or NA                             | CK (error)                |          |  |  |
|    |                                                                                            |                                                 |                           |          |  |  |
| 23 | Enable or disable a                                                                        | uto-calibration of the gyr                      | oscope.                   |          |  |  |
|    | Packet data:                                                                               | Gyroscope auto-calibra                          | ation enable / disable id | entifier |  |  |
|    | Format:                                                                                    | mat: 32-bit integer                             |                           |          |  |  |
|    |                                                                                            | State                                           | Value                     |          |  |  |
|    |                                                                                            | Disable                                         | 0x0000000                 |          |  |  |
|    |                                                                                            | Enable                                          | 0x00000001                |          |  |  |
|    | Macro name:                                                                                | ENABLE_GYR_AUT                                  | OCAL                      |          |  |  |
|    | Response:                                                                                  | ACK (success) or NA                             | CK (error)                |          |  |  |
|    | Default value:                                                                             | Disable                                         |                           |          |  |  |
|    |                                                                                            |                                                 |                           |          |  |  |
| 24 | Enable or disable g                                                                        | yroscope threshold.                             |                           |          |  |  |
|    | Packet data:                                                                               | Gyroscope threshold enable / disable identifier |                           |          |  |  |
|    | Format:                                                                                    | 32-bit integer                                  |                           |          |  |  |
|    |                                                                                            | State                                           | Value                     |          |  |  |

|    |                      | Disable                   | 0x0000                        | 00000      | _ |   |  |
|----|----------------------|---------------------------|-------------------------------|------------|---|---|--|
|    |                      | Enable                    | 0x0000                        | 00001      |   |   |  |
|    | Macro name:          | ENABLE_GYR_THRES          |                               |            |   |   |  |
|    | Response:            | ACK (success) o           | ACK (success) or NACK (error) |            |   |   |  |
|    | Default value:       | Disable                   |                               |            |   |   |  |
|    |                      |                           |                               |            |   |   |  |
| 25 | Set the current rang | e of the gyroscope.       |                               |            |   |   |  |
|    | Packet data:         | Gyroscope range           | e identifier                  |            |   |   |  |
|    | Format:              | 32-bit integer            |                               |            |   |   |  |
|    |                      | Range (deg/s)             |                               | Identifier |   |   |  |
|    |                      | 250                       |                               | 250        |   |   |  |
|    |                      | 500                       |                               | 500        |   |   |  |
|    |                      | 2000                      |                               | 2000       |   |   |  |
|    | Macro name:          | SET_GYR_RAN               | NGE                           |            |   | - |  |
|    | <b>Response:</b>     | ACK (success) of          | or NACK (erro                 | r)         |   |   |  |
|    | Default value:       | 2000 deg/s                |                               |            |   |   |  |
|    |                      |                           |                               |            |   |   |  |
| 26 | Get current gyrosco  | ope range.                |                               |            |   |   |  |
|    | Packet data:         | Gyroscope range indicator |                               |            |   |   |  |
|    | Return format:       | 32-bit integer            | •                             |            |   |   |  |
|    | Macro name:          | GET_GYR_l                 | RANGE                         |            |   |   |  |

# **Accelerometer Settings Command**

| 27 | Set the acceleromet   | er bias.                                        |
|----|-----------------------|-------------------------------------------------|
|    | Packet data:          | Accelerometer bias (X, Y, Z-axis)               |
|    | Format:               | 32-bit integer encoded float 3-component vector |
|    | Macro name:           | SET_ACC_BIAS                                    |
|    | Response:             | ACK (success) or NACK (error)                   |
|    | Default value:        | (0.0, 0.0, 0.0)                                 |
|    |                       |                                                 |
| 28 | Get the current acce  | lerometer bias vector.                          |
|    | Packet data:          | Accelerometer bias vector                       |
|    | Return format:        | 32-bit integer encoded float 3-component vector |
|    | Macro name:           | GET_ACC_BIAS                                    |
|    |                       |                                                 |
| 29 | Set the accelerometer | er alignment matrix.                            |

|    | Packet data:          | Alignment matrix                  |                    |  |  |
|----|-----------------------|-----------------------------------|--------------------|--|--|
|    | Format:               | 32-bit integer encoded floa       | t 3 x 3 matrix     |  |  |
|    | Macro name:           | SET_ACC_ALIG                      |                    |  |  |
|    | Response:             | ACK (success) or NACK (error)     |                    |  |  |
|    | Default value:        | 3x3 Identity matrix               |                    |  |  |
|    |                       |                                   |                    |  |  |
| 30 |                       | elerometer alignment matrix.      |                    |  |  |
|    | Packet data:          | Accelerometer alignme             | nt matrix          |  |  |
|    | Return format:        | 32-bit integer encoded            | float 3 x 3 matrix |  |  |
|    | Macro name:           | GET_ACC_ALIG                      |                    |  |  |
|    |                       |                                   |                    |  |  |
| 31 | Set the current rang  | rrent range of the accelerometer. |                    |  |  |
|    | Packet data:          | Accelerometer range identifier    |                    |  |  |
|    | Format:               | 32-bit integer                    |                    |  |  |
|    |                       | Range (g: 1 gravity)              | Identifier         |  |  |
|    |                       | 2g                                | 2                  |  |  |
|    |                       | 4g                                | 4                  |  |  |
|    |                       | 8g                                | 8                  |  |  |
|    |                       | 16g                               | 16                 |  |  |
|    | Macro name:           | SET_ACC_RANGE                     |                    |  |  |
|    | Response:             | ACK (success) or NACK (           | error)             |  |  |
|    | Default value:        | 2g                                |                    |  |  |
| 32 | Get current accelere  | ent accelerometer range.          |                    |  |  |
|    | Packet data:          | Accelerometer range in            | dicator            |  |  |
|    | <b>Return format:</b> | 32-bit integer                    |                    |  |  |
|    | Macro name:           | GET_ACC_RANGE                     |                    |  |  |

# **Magnetometer Settings Command**

| 33 | Set the current range of the magnetometer.         |                |            |  |
|----|----------------------------------------------------|----------------|------------|--|
|    | Packet data:         Magnetometer range identifier |                |            |  |
|    | Format:                                            | 32-bit integer |            |  |
|    |                                                    | Range          | Identifier |  |
|    |                                                    | 130 uT         | 130        |  |
|    |                                                    | 190 uT         | 190        |  |
|    |                                                    | 250 uT         | 250        |  |
|    |                                                    | 400 uT         | 400        |  |

|    |                                            | 470 uT                                              | 470                         |  |  |  |
|----|--------------------------------------------|-----------------------------------------------------|-----------------------------|--|--|--|
|    |                                            | 560 uT                                              | 560                         |  |  |  |
|    |                                            | 810 uT                                              | 810                         |  |  |  |
|    | Macro name:                                |                                                     | 010                         |  |  |  |
|    | Response:                                  | SET_MAG_RANGE                                       |                             |  |  |  |
|    | Default value:                             | ACK (success) or NACK (error)                       |                             |  |  |  |
|    | <b>Default value:</b> 250 uT               |                                                     |                             |  |  |  |
| 34 | Get current magnete                        | Get current magnetometer range.                     |                             |  |  |  |
|    | Packet data:                               | Magnetometer rang                                   | e indicator (same as above) |  |  |  |
|    | Return format:                             | 32-bit integer                                      |                             |  |  |  |
|    | Macro name:                                | GET_MAG_RANC                                        | Æ                           |  |  |  |
| 25 |                                            |                                                     |                             |  |  |  |
| 35 | Set the current hard                       |                                                     | in uT                       |  |  |  |
|    | Packet data:                               | Hard iron offset values in uT                       |                             |  |  |  |
|    | Format:                                    | 32-bit integer encoded 3-element float vector       |                             |  |  |  |
|    | Macro name:                                | SET_HARD_IRON_OFFSET                                |                             |  |  |  |
|    | Response:                                  | ACK (success) or NACK (error)                       |                             |  |  |  |
|    | Default value:                             | (0.0, 0.0, 0.0)                                     |                             |  |  |  |
| 36 | Get current hard iron offset vector.       |                                                     |                             |  |  |  |
|    | Packet data:                               | Hard iron offset values in uT                       |                             |  |  |  |
|    | Return format:                             | 32-bit integer encoded 3-element float vector       |                             |  |  |  |
|    | Macro name:                                | GET_HARD_IRON_OFFSET                                |                             |  |  |  |
| 37 | Set the current soft iron matrix.          |                                                     |                             |  |  |  |
| 01 | Packet data: Soft iron matrix values in uT |                                                     |                             |  |  |  |
|    | Format:                                    | 32-bit integer encoded 9-element (3x3) float matrix |                             |  |  |  |
|    | Macro name:                                | SET_SOFT_IRON_MATRIX                                |                             |  |  |  |
|    | Response:                                  | ACK (success) or NACK (error)                       |                             |  |  |  |
|    | Default value:                             | (1, 0, 0)                                           |                             |  |  |  |
|    |                                            | (0, 1, 0)                                           |                             |  |  |  |
|    |                                            | (0, 0, 1)                                           |                             |  |  |  |
|    |                                            |                                                     |                             |  |  |  |
| 38 | Get the current soft iron matrix.          |                                                     |                             |  |  |  |
|    | Packet data:                               | Soft iron matrix values in uT                       |                             |  |  |  |
|    | <b>Return format:</b>                      | 32-bit integer encoded 9-element (3x3) float matrix |                             |  |  |  |

|    | Macro name:                                             | GET_SOFT_IRON_MATRIX                |
|----|---------------------------------------------------------|-------------------------------------|
| 39 | Set the current eart                                    | h magnetic field strength estimate. |
|    | Packet data:                                            | Field estimate value in uT          |
|    | Format:                                                 | 32-bit integer encoded float        |
|    | Macro name:                                             | SET_FIELD_ESTIMATE                  |
|    | Response:                                               | ACK (success) or NACK (error)       |
|    | Default value:                                          | 50 uT                               |
| 40 | Get the current earth magnetic field strength estimate. |                                     |
|    | Packet data:                                            | Field estimate value in uT          |
|    | Return format:                                          | 32-bit integer encoded float        |
|    | Macro name:                                             | GET_FIELD_ESTIMATE                  |

# **Filter Settings Command**

| 41 | Set the sensor filter mode. |                          |                  |   |
|----|-----------------------------|--------------------------|------------------|---|
|    | Packet data:                | Mode identifier          |                  |   |
|    | Format:                     | 32-bit integer           |                  |   |
|    |                             | Mode                     | Value            |   |
|    |                             | Gyroscope only           | 0x0000000        |   |
|    |                             | Accelerometer +          | 0x00000001       |   |
|    |                             | gyroscope                |                  |   |
|    |                             | Accelerometer +          | 0x0000002        |   |
|    |                             | gyroscope +              |                  |   |
|    |                             | magnetometer             |                  |   |
|    |                             | Accelerometer +          | 0x00000003       |   |
|    |                             | Magnetometer (Euler      |                  |   |
|    |                             | angle based filtering)   |                  | _ |
|    |                             | Accelerometer +          | 0x00000004       |   |
|    |                             | Gyroscope (Euler         |                  |   |
|    |                             | angle-based filtering)   |                  |   |
|    | Macro name:                 | SET_FILTER_MODE          |                  |   |
|    | Response:                   | ACK (success) or NACK (  | (error)          |   |
|    | Default value:              | Accelerometer + gyroscop | e + magnetometer |   |
| 42 | Get the currently s         | elected filter mode.     |                  |   |
|    | Packet data:                | Filter mode identifier   |                  |   |

|    | Return format:                    | 32-bit integer                 |                          |  |
|----|-----------------------------------|--------------------------------|--------------------------|--|
|    |                                   | Mode                           | Value                    |  |
|    |                                   | Gyroscope only                 | 0x0000000                |  |
|    |                                   | Accelerometer                  | + 0x0000001              |  |
|    |                                   | gyroscope                      |                          |  |
|    |                                   | Accelerometer                  | + 0x0000002              |  |
|    |                                   | gyroscope                      | +                        |  |
|    |                                   | magnetometer                   |                          |  |
|    | Macro name:                       | GET_FILTER_MODE                |                          |  |
|    |                                   |                                |                          |  |
| 43 | Set one of the filter p           | -                              |                          |  |
|    | Packet data:                      | Magnetometer correction stre   | ength preset identifier  |  |
|    | Format:                           | 32-bit integer                 |                          |  |
|    |                                   | Preset                         | Value                    |  |
|    |                                   | Dynamic                        | 0x0000000                |  |
|    |                                   | Strong                         | 0x00000001               |  |
|    |                                   | Medium                         | 0x0000002                |  |
|    |                                   | Weak                           | 0x00000003               |  |
|    | Macro name:                       | SET_FILTER_PRESET              |                          |  |
|    | Response:                         | ACK (success) or NACK (er      | ror)                     |  |
|    | Default value:                    | Dynamic                        |                          |  |
| 44 | Get the currently ma              | gnetometer correction strength | nreset                   |  |
|    | Packet data:                      | Magnetometer correction        |                          |  |
|    | Return format:     32-bit integer |                                | anongen proser recention |  |
|    |                                   | Correction strength            | Value                    |  |
|    |                                   | Dynamic                        | 0x0000000                |  |
|    |                                   | Strong                         | 0x00000001               |  |
|    |                                   | Medium                         | 0x0000002                |  |
|    |                                   | Weak                           | 0x0000003                |  |
|    | Macro name:                       | GET_FILTER_PRESET              |                          |  |
|    |                                   |                                |                          |  |

# CAN Bus Settings Command (Only for LPMS-CU module)

| 45 | Set CAN stream format. This command has been deprecated. |  |  |
|----|----------------------------------------------------------|--|--|
| 46 | Set the CAN baudrate                                     |  |  |
|    | Packet data:         CAN communication baudrate          |  |  |

| Format:        | 32-bit integer                |            |  |
|----------------|-------------------------------|------------|--|
|                | Correction strength           | Value      |  |
|                | 10Kbit/s                      | 0x0000000  |  |
|                | 20Kbit/s                      | 0x0000008  |  |
|                | 50Kbit/s                      | 0x0000010  |  |
|                | 125Kbit/s                     | 0x00000018 |  |
|                | 250Kbit/s                     | 0x00000020 |  |
|                | 500Kbit/s                     | 0x00000028 |  |
|                | 800Kbit/s                     | 0x00000030 |  |
|                | 1Mbit/s                       | 0x00000038 |  |
| Macro name:    | SET_CAN_BAUDRATI              | E          |  |
| Response:      | ACK (success) or NACK (error) |            |  |
| Default value: | 1Mbit/s                       |            |  |

# **Additional Settings**

| 47 | Set CAN stream format. This command has been deprecated. |                               |  |
|----|----------------------------------------------------------|-------------------------------|--|
| -  |                                                          |                               |  |
| 48 | Set gyroscope alignment bias                             |                               |  |
|    | Packet data:                                             | Gyroscope alignment bias      |  |
|    | Format:                                                  | Float 3-vector                |  |
|    | Macro name:                                              | SET_GYR_ALIGN_BIAS            |  |
|    | Response:                                                | ACK (success) or NACK (error) |  |
|    | Default value:                                           | 1Mbit/s                       |  |
| 49 | Get gyroscope alignr                                     | nent bias                     |  |
|    | Packet data:                                             | Gyroscope alignment bias      |  |
|    | <b>Return format:</b>                                    | Float 3-vector                |  |
|    | Macro name:                                              | GET_GYR_ALIGN_BIAS            |  |
| 50 | Set gyroscope alignm                                     | nent matrix                   |  |
|    | Packet data:                                             | Gyroscope alignment matrix    |  |
|    | Format:                                                  | Float 3x3 matrix              |  |
|    | Macro name:                                              | SET_GYR_ALIGN_MATRIX          |  |
|    | Response:                                                | ACK (success) or NACK (error) |  |
|    | Default value:                                           | (1, 0, 0)                     |  |
|    |                                                          | (0, 1, 0)                     |  |
|    |                                                          | (0, 0, 1)                     |  |
| 51 | Get gyroscope alignr                                     | nent matrix                   |  |
|    | Packet data:     Gyroscope alignment matrix              |                               |  |

|    | Return format:                                            | Float 3x3 matrix                                        |               |  |
|----|-----------------------------------------------------------|---------------------------------------------------------|---------------|--|
|    | Macro name:                                               | GET_GYR_ALIGN_MATRIX                                    |               |  |
| 52 | Reserved                                                  | Reserved                                                |               |  |
| 53 | Reserved                                                  |                                                         |               |  |
| 54 | Reserved                                                  |                                                         |               |  |
| 55 | Reserved                                                  |                                                         |               |  |
| 56 | Reserved                                                  |                                                         |               |  |
| 57 | Reserved                                                  |                                                         |               |  |
| 58 | Reserved                                                  |                                                         |               |  |
| 59 | Reserved                                                  |                                                         |               |  |
| 60 | Set raw data low-pass                                     |                                                         |               |  |
|    | Packet data:                                              | Low pass strength (1.0 is weakest / disa                | abled)        |  |
|    | Format:                                                   | Float                                                   |               |  |
|    | Macro name:                                               | SET_RAW_DATA_LP                                         |               |  |
|    | Response:                                                 | ACK (success) or NACK (error)                           |               |  |
|    | Default value:                                            | 1.0                                                     |               |  |
| 61 | Get raw data low-pass                                     |                                                         |               |  |
|    | Packet data:Low pass strength (1.0 is weakest / disabled) |                                                         |               |  |
|    | <b>Return format:</b>                                     | Float                                                   |               |  |
|    | Macro name:                                               | GET_RAW_DATA_LP                                         |               |  |
| 62 | Set CANopen mapping (only for LPMS-CU module)             |                                                         |               |  |
|    | Packet data:                                              | CANopen mapping                                         |               |  |
|    | Format:                                                   | The mapping data consists of 8 integer words. Each of   |               |  |
|    |                                                           | these words represents the assignment of half a CANopen |               |  |
|    |                                                           | transmission object / message (TPDO) to specific sensor |               |  |
|    |                                                           | data. In more detail:                                   |               |  |
|    |                                                           | Message name                                            | Position in   |  |
|    |                                                           |                                                         | configuration |  |
|    |                                                           |                                                         | mapping       |  |
|    |                                                           |                                                         | message       |  |
|    |                                                           | TPDO 1 (msg. 0x180, bytes 0-3)                          | 0             |  |
|    | TPDO 1 (msg. 0x180, bytes 5-7)         1                  |                                                         | 1             |  |
|    |                                                           | TPDO 2 (msg. 0x280, bytes 0-3)                          | 2             |  |
|    |                                                           | TPDO 2 (msg. 0x280, bytes 5-7)                          | 3             |  |
|    |                                                           | TPDO 3 (msg. 0x380, bytes 0-3)                          | 4             |  |

|    |                      | TPDO 3 (msg. 0x380, bytes 5-7) 5           |                |               |  |
|----|----------------------|--------------------------------------------|----------------|---------------|--|
|    |                      | TPDO 4 (msg. 0x480, by                     |                | 6             |  |
|    |                      | TPDO 4 (msg. 0x480, by                     |                | 7             |  |
|    |                      |                                            |                |               |  |
|    |                      | Assignments work accordi                   | llowing table: |               |  |
|    |                      | Sensor data                                | Assign         | ignment index |  |
|    |                      | Angular velocity X                         | 0              |               |  |
|    |                      | Angular velocity Y                         | 1              |               |  |
|    |                      | Angular velocity Z                         | 2              |               |  |
|    |                      | Euler angle X                              | 3              |               |  |
|    |                      | Euler angle Y                              | 4              |               |  |
|    |                      | Euler angle Z                              | 5              |               |  |
|    |                      | Lin. acceleration X                        | 6              |               |  |
|    |                      | Lin. acceleration Y                        | 7              |               |  |
|    |                      | Lin. acceleration Z                        | 8              |               |  |
|    |                      | Magnetometer X                             | 9              |               |  |
|    |                      | Magnetometer Y                             |                |               |  |
|    |                      | Magnetometer Z                             | 11             |               |  |
|    |                      | Quaternion W12Quaternion X13Quaternion Y14 |                | 3             |  |
|    |                      |                                            |                |               |  |
|    |                      |                                            |                |               |  |
|    |                      | Quaternion Z                               | 15             | 6             |  |
|    |                      | Accelerometer X                            | 16             |               |  |
|    |                      | Accelerometer Y                            | 17             |               |  |
|    |                      | Accelerometer Z                            | 18             |               |  |
|    | Macro name:          | SET_CAN_MAPPING                            | ·              |               |  |
|    | Response:            | ACK (success) or NACK (                    | (error)        |               |  |
|    | Default value:       | 0x00000007 00000006 000                    | 000005 000     | 00004         |  |
|    |                      | 00000003 00000002 00000                    | 0001 00000     | 000           |  |
| 63 | Get CANopen mapping  | g (only for LPMS-CU module)                |                |               |  |
|    | Packet data:         | CANopen mapping                            |                |               |  |
|    | Return format:       | See command 62                             |                |               |  |
|    | Macro name:          | GET_CAN_MAPPING                            |                |               |  |
| 64 | Set CANopen heartbea | t frequency (only for LPMS-                | CU module)     | )             |  |
|    | Packet data:         | CANopen heartbeat freque                   | ency           |               |  |

|    | Format:                | Integer. In detail:         | Integer. In detail:           |  |  |  |
|----|------------------------|-----------------------------|-------------------------------|--|--|--|
|    |                        | Heartbeat frequency         | Identifier                    |  |  |  |
|    |                        | 5Hz                         | 0x0000000                     |  |  |  |
|    |                        | 1Hz                         | 0x00000001                    |  |  |  |
|    |                        | 0.5Hz                       | 0x0000002                     |  |  |  |
|    |                        | 0.2Hz                       | 0x0000003                     |  |  |  |
|    |                        | 0.1Hz                       | 0x00000004                    |  |  |  |
|    | Macro name:            | SET_CAN_HEARTBEAT           | Г                             |  |  |  |
|    | Response:              | ACK (success) or NACK       | (error)                       |  |  |  |
|    | Default value:         | 0x00000000                  |                               |  |  |  |
| 65 | Get CAN heartbeat (c   | only for LPMS-CU module)    | ly for LPMS-CU module)        |  |  |  |
|    | Packet data:           | CANopen heartbeat frequency |                               |  |  |  |
|    | <b>Return format:</b>  | See command 64              |                               |  |  |  |
|    | Macro name:            | GET_CAN_HEARTBEA            | GET_CAN_HEARTBEAT             |  |  |  |
| 66 | Reset sensor data time | estamp to 0                 | stamp to 0                    |  |  |  |
|    | Packet data:           | none                        | none                          |  |  |  |
|    | Format:                | none                        |                               |  |  |  |
|    | Macro name:            | RESET_TIMESTAMP             |                               |  |  |  |
|    | Response:              | ACK (success) or NACK       | ACK (success) or NACK (error) |  |  |  |
|    | Default value:         | none                        |                               |  |  |  |

# **Example Communication**

In this section we will show a practical example of how a communication sequence could be structured. A similar sequence is also used in the LpmsControl software to poll data from the LPMS-B. Our standard LpBUS protocol is used.

### **Request Sensor Configuration**

### GET request (HOST -> SENSOR)

| Packet byte no. | Content | Meaning                           |
|-----------------|---------|-----------------------------------|
| 0               | 3Ah     | Packet start                      |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)           |
| 2               | 00h     | OpenMAT ID MSB                    |
| 3               | 04h     | Command no. LSB (4d = GET_CONFIG) |
| 4               | 00h     | Command no. MSB                   |

| 5  | 00h | Data length LSB (GET command = no data) |
|----|-----|-----------------------------------------|
| 6  | 00h | Data length MSB                         |
| 7  | 05h | Check sum LSB                           |
| 8  | 00h | Check sum MSB                           |
| 9  | 0Dh | Packet end 1                            |
| 10 | 0Ah | Packet end 2                            |

| Packet byte no. | Content | Meaning                                    |
|-----------------|---------|--------------------------------------------|
| 0               | 3Ah     | Packet start                               |
| 1               | 01h     | OpenMAT LSB (ID = 1)                       |
| 2               | 00h     | OpenMAT MSB                                |
| 3               | 04h     | Command no. LSB (4d = GET_CONFIG)          |
| 4               | 00h     | Command no. MSB                            |
| 5               | 04h     | Data length LSB (32-bit integer = 4 bytes) |
| 6               | 00h     | Data length MSB                            |
| 7               | xxh     | Configuration data byte 1 (LSB)            |
| 8               | xxh     | Configuration data byte 2                  |
| 9               | xxh     | Configuration data byte 3                  |
| 10              | xxh     | Configuration data byte 4 (MSB)            |
| 11              | xxh     | Check sum LSB                              |
| 12              | xxh     | Check sum MSB                              |
| 13              | 0Dh     | Packet end 1                               |
| 14              | 0Ah     | Packet end 2                               |

## Request Gyroscope Range

## GET request (HOST -> SENSOR)

| Packet byte no. | Content | Meaning                                 |
|-----------------|---------|-----------------------------------------|
| 0               | 3Ah     | Packet start                            |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)                 |
| 2               | 00h     | OpenMAT ID MSB                          |
| 3               | 1Ah     | Command no. LSB (26d = GET_GYR_RANGE)   |
| 4               | 00h     | Command no. MSB                         |
| 5               | 00h     | Data length LSB (GET command = no data) |
| 6               | 00h     | Data length MSB                         |

| 7  | 1Bh | Check sum LSB |
|----|-----|---------------|
| 8  | 00h | Check sum MSB |
| 9  | 0Dh | Packet end 1  |
| 10 | 0Ah | Packet end 2  |

| Packet byte no. | Content | Meaning                                    |
|-----------------|---------|--------------------------------------------|
| 0               | 3Ah     | Packet start                               |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)                    |
| 2               | 00h     | OpenMAT ID MSB                             |
| 3               | 1Ah     | Command no. LSB (26d = GET_GYR_RANGE)      |
| 4               | 00h     | Command no. MSB                            |
| 5               | 04h     | Data length LSB (32-bit integer = 4 bytes) |
| 6               | 00h     | Data length MSB                            |
| 7               | xxh     | Range data byte 1 (LSB)                    |
| 8               | xxh     | Range data byte 2                          |
| 9               | xxh     | Range data byte 3                          |
| 10              | xxh     | Range data byte 4 (MSB)                    |
| 11              | xxh     | Check sum LSB                              |
| 12              | xxh     | Check sum MSB                              |
| 13              | 0Dh     | Packet end 1                               |
| 14              | 0Ah     | Packet end 2                               |

## Set Accelerometer Range

### SET request (HOST -> SENSOR)

| Packet byte no. | Content | Meaning                                        |
|-----------------|---------|------------------------------------------------|
| 0               | 3Ah     | Packet start                                   |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)                        |
| 2               | 00h     | OpenMAT ID MSB                                 |
| 3               | 1Fh     | Command no. LSB (31d = SET_ACC_RANGE)          |
| 4               | 00h     | Command no. MSB                                |
| 5               | 04h     | Data length LSB (32-bit integer = 4 bytes)     |
| 6               | 00h     | Data length MSB                                |
| 7               | 08h     | Range data byte 1 (Range indicator $8g = 8d$ ) |
| 8               | 00h     | Range data byte 2                              |

| 9  | 00h | Range data byte 3 |
|----|-----|-------------------|
| 10 | 00h | Range data byte 4 |
| 11 | 2Bh | Check sum LSB     |
| 12 | 00h | Check sum MSB     |
| 13 | 0Dh | Packet end 1      |
| 14 | 0Ah | Packet end 2      |

| Packet byte no. | Content | Meaning                               |
|-----------------|---------|---------------------------------------|
| 0               | 3Ah     | Packet start                          |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)               |
| 2               | 00h     | OpenMAT ID MSB                        |
| 3               | 00h     | Command no. LSB (0d = REPLY_ACK)      |
| 4               | 00h     | Command no. MSB                       |
| 5               | 00h     | Data length LSB (ACK reply = no data) |
| 6               | 00h     | Data length MSB                       |
| 11              | 01h     | Check sum LSB                         |
| 12              | 00h     | Check sum MSB                         |
| 13              | 0Dh     | Packet end 1                          |
| 14              | 0Ah     | Packet end 2                          |

### **Read Sensor Data**

## Get request (HOST -> SENSOR)

| Packet byte no. | Content | Meaning                                 |
|-----------------|---------|-----------------------------------------|
| 0               | 3Ah     | Packet start                            |
| 1               | 01h     | OpenMAT ID LSB (ID = 1)                 |
| 2               | 00h     | OpenMAT MSB                             |
| 3               | 09h     | Command no. LSB (9d = GET_SENSOR_DATA)  |
| 4               | 00h     | Command no. MSB                         |
| 5               | 00h     | Data length LSB (GET command = no data) |
| 6               | 00h     | Data length MSB                         |
| 7               | 0Ah     | Check sum LSB                           |
| 8               | 00h     | Check sum MSB                           |
| 9               | 0Dh     | Packet end 1                            |
| 10              | 0Ah     | Packet end 2                            |

| Packet byte no. | Content  | Meaning                                |
|-----------------|----------|----------------------------------------|
| 0               | 3Ah      | Packet start                           |
| 1               | 01h      | OpenMAT ID LSB (ID = 1)                |
| 2               | 00h      | OpenMAT ID MSB                         |
| 3               | 09h      | Command no. LSB (9d = GET_SENSOR_DATA) |
| 4               | 00h      | Command no. MSB                        |
| 5               | 34h      | Data length LSB (56 bytes)             |
| 6               | 00h      | Data length MSB                        |
| 7-10            | xxxxxxxh | Timestamps                             |
| 11-14           | xxxxxxxh | Gyroscope data x-axis                  |
| 15-18           | xxxxxxxh | Gyroscope data y-axis                  |
| 19-22           | xxxxxxxh | Gyroscope data z-axis                  |
| 23-26           | xxxxxxxh | Accelerometer x-axis                   |
| 27-30           | xxxxxxxh | Accelerometer y-axis                   |
| 31-34           | xxxxxxxh | Accelerometer z-axis                   |
| 35-38           | xxxxxxxh | Magnetometer x-axis                    |
| 39-42           | xxxxxxxh | Magnetometer y-axis                    |
| 43-46           | xxxxxxxh | Magnetometer z-axis                    |
| 47-50           | xxxxxxxh | Orientation quaternion q0              |
| 51-54           | xxxxxxxh | Orientation quaternion q1              |
| 55-58           | xxxxxxxh | Orientation quaternion q2              |
| 59-62           | xxxxxxxh | Orientation quaternion q3              |
| 63              | xxh      | Check sum LSB                          |
| 64              | xxh      | Check sum MSB                          |
| 65              | 0Dh      | Message end byte 1                     |
| 66              | 0Ah      | Message end byte 2                     |

## IX. OpenMAT LIBRARY

#### **Overview**

#### Introduction

OpenMAT is the software package delivered with a LPMS device. The package contains the basic hardware device drivers for the sensors, a C++ library to easily access the functionality of the IMUs and also a network interface (OpenMAT network) that allows applications to communicate with each other to exchange sensor information. OpenMAT consists of the following components:

- LpSensor library: OpenMAT applications above are based on the LpSensor library. This library
  contains classes that allow easy access to the functionality of the LPMS devices. Contained
  classes and their most important methods as well as usage examples are described further on in
  this chapter.
- LpmsControl application: This application is used to control the basic LPMS device functionality. It can be used to connect to multiple sensors, adjust parameters and record sample data. Data is graphically represented as line graphs or as a 3D cube that changes orientation according to the data received from a sensor.

PLEASE NOTE: LpmsControl is also used to do updates of the LPMS firmware. We will explain further details below. IMPORTANT: We recommend the users to use the high performance mode of a PC in order to guarantee the LpmsControl application performance.

 OpenMAT server: The OpenMAT server manages the communication of applications on the OpenMAT network. Please contact LP-Research for examples of how to use the OpenMAT network.

OpenMAT is available as binary release and as source code release. If you would like to use the included applications as is, please use the binary release. This is suggested as the easiest way to start as it allows you to test the functionality of your sensor.

We also offer a source code release that allows you to re-compile or modify the code. In case you would like to include OpenMAT with your own applications it is recommended to take a look at the source code release.

#### **Application Installation**

Please follow the steps below to install the OpenMAT binary release. The binary release also includes the OpenMAT API pre-compiled for Windows 32-bit.

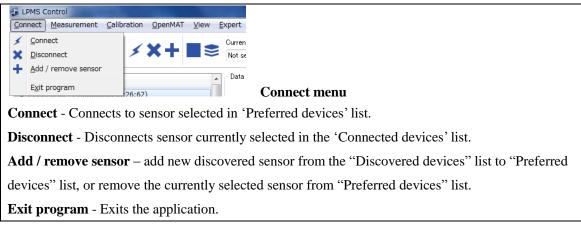
- When you purchase one of our sensors the latest version of the library at the time is also contained on the included CD. Please be aware that development on OpenMAT is ongoing and therefore the version on the CD might become outdated. Therefore please check on our website for updates.
- 2. Start OpenMAT-x.x.x-Setup.exe (x.x.x being the latest version number).
- 3. Follow the displayed installation instructions.
- 4. Switch the LPMS device on.
- 5. Start LpmsControl from the OpenMAT entry in the start menu.
- 6. Check if your device is listed in the 'Discovered devices' list.
- 7. Mark the device you would like to connect to by clicking on it in the list and push the connect button.
- 8. After a few seconds you should be seeing data being streamed from your sensor.

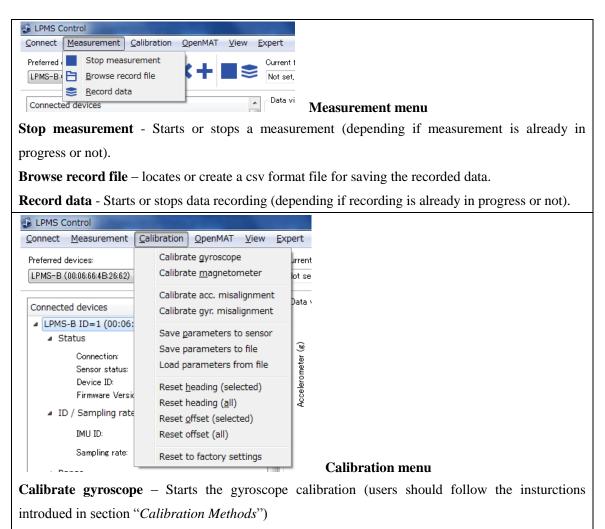
## LpmsControl Software Operation

#### **Overview**

The LpmsControl application allows users to control various aspects of the LPMS-B sensor that can be used to:

- list all LPMS-B devices that are discovered in the system.
- connect to up to 7 sensors simultaneously by one Bluetooth receiver.
- adjust the sensor parameters (sensor range etc.).
- reset orientation and reference vectors.
- initiate gyroscope and magnetometer calibration.
- display the acquired data in real-time either as line graphs or a 3D cube.
- record data from the sensors to a CSV data file.
- upload new firmware and in-application-programming software to the sensor.


As LpmsControl is part of the open-source OpenMAT library its source code is available and can be modified by the user. Most parts of the code are documented, so that a user can also use parts of LpmsControl to write their own sensor control code.


#### **GUI Elements**

#### **Application window**

| © LPMS Control Connect Measurement Calibration OpenMAT View Expert Menu Bar Tool B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ar                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Preferred devices:     Current filename:     Preset method     Reset target:       [LPMS-B (00:06:66:4B:26:62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>⋒</b> <i>₿≹</i> ⊀⊛                                                                                                               |
| Connected devices<br>( LPMS-B ID=1 (00:06:66:48:26:62)<br>* Status<br>Correction: OK<br>Sensor status: started<br>Device ID 00:06:66:48:26:62<br>Firmware Version: 10.16<br>* ID / Sampling rate<br>IMU ID<br>Sampling rate<br>IMU ID<br>Sampling rate<br>MG range: 2000 dps<br>* Status<br>Correction: OK<br>Sensor status: started<br>Device ID 00:06:66:48:26:62<br>Firmware Version: 10.16<br>* Range<br>GYR range: 2000 dps<br>* Status<br>* Range<br>GYR range: 2000 dps<br>* Status<br>* Range<br>GYR range: 2000 dps<br>* Status<br>* Filter<br>* Filter<br>* Filter<br>* Recorrection: Week<br>* Status<br>* Status<br>* Status<br>* Status<br>* Status<br>* The parameters of connected<br>* Status<br>* The parameters of connected<br>* Status<br>* | <ul> <li>X = +00.17</li> <li>Y = -00.14</li> <li>Z = -00.94</li> <li>X = -148.09</li> <li>Y = -09.08</li> <li>Z = +17.01</li> </ul> |
| Mag. correction: Weak<br>Gyr. threshold: Disable<br>Gyr. autocalibration: Disable<br>Low-pass filter: off<br>Baw agnetometer<br>Raw agn                                                                                                                          | <ul> <li>X = = -07.16</li> <li>Y = = +92.89</li> <li>Z = = +25.17</li> </ul>                                                        |

#### <u>Menu Bar</u>





**Calibrate magnetometer** – Starts the magnetic calibration (users should follow the insturctions introdued in section "*Calibration Methods*"). IMPORTANT: Euler angle transmission must be turned on for the magnetometer calibration to succeed.

**Calibrate acc. misalignment** – Starts the accelerometer calibration. (users should follow the insturctions introdued in section "*Calibration Methods*").

Calibrate gyr. misalignment – reserved by LP-RESEARCH.

**Save parameters to sensor** – Saves the current parameter settings and calibration results into the sensor flash.

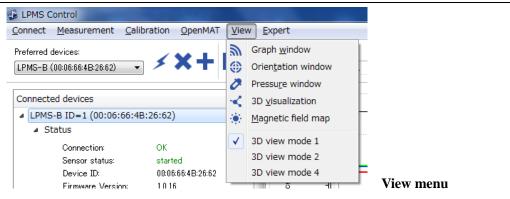
**Save parameters to file** – Saves the current parameter settings and calibration results into a .txt file in your local host system.

**Load parameters from file** – Loads the previously saved calibration results in a local txt file into the sensor flash.

**Reset heading (selected)** – Sets the magnetometer and accelerometer reference of the LP-Filter of the currenly selected sensor in the "Connected devices" list to the current measured magnetic and acceleration vector. This function should be used after calibrating the magnetometer.

**Reset heading (all)** – Sets the magnetometer and accelerometer reference of the LP-Filter of all the sensors in the "Connected devices" list to the current measured magnetic and acceleration vector. This function should be used after calibrating the magnetometer.

**Reset offset (selected)** - Resets the current orientation of the selected sensor in the "Connected devices" list as zero-orientation. Further rotations will be the difference rotation between the zero-orientation and the currently measured orientation.


**Reset offset (all)** - Resets the current orientation of all the sensors in the "Connected devices" list as zero-orientation. Further rotations will be the difference rotation between the zero-orientation and the currently measured orientation.

**Reset to factory settings** – Recovers the settings of all the connected sensors to the factory default values.

| DpenMAT LPMS Control      | ng Manager (Marin | 100 million (1997)    |   |
|---------------------------|-------------------|-----------------------|---|
| Connect Measurement Calib | ration OpenMAT    | View Expert           |   |
| Sensor Control            | Conr              | ect to OpenMAT server | ł |
| Discovered devices        | Versi             | ion info              |   |
|                           |                   |                       | _ |

**Connect to OpenMAT server** - This is used for human model simulator. The human model simulator allows the construction of 3D models with links and joints that can be associated with orientation sensors on the OpenMAT network. Momentarily this application is still in an experimental state. PLEASE NOTE: This function is reserved by LP-RESEARCH.

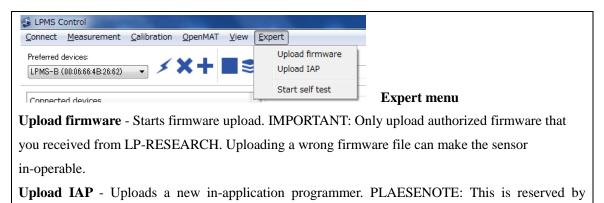
Version info - Version information of the LpmsControl software.



Graph window- Switches the middle graph window to show the raw sensor data.

Orientation window – Switches the middle graph window to show the orientation data.

Pressure window - Switches the middle graph window to show the pressure data.


3D visualization - Switches the middle graph window to 3D cube view.

Magnetic field map – Switches the middle graph window to magnetic field map view.

**3D view mode 1** - Switches the middle graph window to 1 window for one sensor 3D visualization.

**3D view mode 2** - Switches the middle graph window to 2 windows for 2 sensors 3D visualization.

**3D view mode 4** - Switches the middle graph window to 4 windows for 4 sensors 3D visualization.



LP-RESEARCH and should not be used by user.

Start self test - Starts a self test for checking the basic functionalities of the sensor.

#### **Device Discovery**

The discovery of Bluetooth devices usually takes up to 20s, depending on your system, so please be patient, if the LPMS-B device does not show up in the "Discovered devices" list immediately. If the LPMS-B device cannot be discovered by the initial discovering, please try to push the "Scan devices" button and search again. After your devices have been discovered, push the "Add devices" button to add your discovered devices to the "Preferred devices" list, and save the setting by clicking "Save devices" button.

#### **Connecting and Disconnecting a Device**

To connect a LPMS-B sensor click on the corresponding item in the 'Preferred devices' list and click the 'Connect' button. The sensor should now become listed in the 'Connected devices' list. While establishing the connection, the 'Connection status' indicator shows 'connecting...'. Once a connection has been successfully established, the connection status will change to 'connected'. The sensor will start measuring automatically after connecting. Should the connection procedure fail for some reason, 'failed' will be displayed. If a successful connection is interrupted the connection status will change to 'connection interrupted'.

PLEASE NOTE: The LpmsControl software is using the windows Bluetooth stack driver. Please verify your Bluetooth receiver in the host system whether it is using the correct drivers.

#### **Sensor Parameter Adjustment**

Sensor parameters can be adjusted using the item in the "Connected devices" list that corresponds to the target device. Using the drop down lists the following parameters can be set:

- **IMU ID**: The device OpenMAT ID.
- Sampling rate: System sampling frequency
- GYR range: Gyroscope measurement range

- ACC range: Accelerometer measurement range
- MAG range: Magnetometer measurement range
- Filter mode: The filter mode setting (see also the previous section "Filter Settings")
- Mag. correction: The magnetic correction setting (see also the previous section "*Filter Settings*")
- Linear acc cor.: The linear acceleration correction setting (see also the previous section *"Filter Settings"*)
- **Rotational acc cor**.: The rotational acceleration correction setting (see also the previous section *"Filter Settings"*)
- **Gyr. threshold**: To enable or disable the gyroscope threshold function (see also the previous section "*Filter Settings*")
- **Gyr. autocalibration**: To enable or disable the gyroscope auto calibration function (see also the previous section "*Filter Settings*")
- **Low-pass filter**: To set up the coefficient of the low pass filter (see also the previous section *"Filter Settings"*)
- Selected data: check the data types you want to acquire.

Parameter adjustments are normally only persistent until the sensor is switched off. You can permanently save the newly adjusted parameters to the LPMS flash memory by selecting "Save parameters to sensor" in the "Calibration" menu of LpmsControl.

#### **Reset of Orientation and Reference Vectors**

The offset of the orientation measured by the sensor can be set to the currently acquired orientation by clicking on the "Reset offset" functions of LpmsControl. The newly reported orientation data will be the orientation difference between this zero-orientation and the un-adjusted (raw) orientation measurement.

The accelerometer and magnetometer reference vector is reset by clicking on the "Reset heading" function of LpmsControl. Before resetting the heading reference, PLEASSE DO complete the magnetic calibration. While initiating the heading reference reset, point the y axis of the sensor roughly in north direction and hold the x-y plane of the sensor parallel to the ground.

IMPORTANT: The adjustment of the heading reference vectors is very important for accurate orientation measurements. The sensor will be delivered to you in a pre-calibrated state. However, as the direction of the earth magnetic field slightly varies at different place, it might be necessary to reset the reference. To save the new heading reference after a successful reset, select "Save parameters to sensor" function of LpmsControl. Normally the setting of the heading reference vectors when done accurately only needs to be done once.

#### How to Upload New Firmware

IMPORTANT: Please follow the following steps carefully when you are updating the sensor firmware. Any mistake operation might result in a failure of firmware update and disable sensor functionality.

- 1. Start your current LpmsControl software.
- 2. Connect to the sensor you would like to update.
- 3. Choose the "Save parameters to file" function from the calibration menu of LpmsControl to save the current sensor calibration results into a .txt file in your local host system.
- 4. Select "Upload firmware" function in the "Expert" menu.
- 5. Click OK and select the new firmware file. Be careful that you select the right file which should be named as LpmsBFirmwareX.X.X.bin by LP-RESEARCH.
- 6. Wait for the upload process to finish. It should take around 30 seconds. At around 15s the green LED on the sensor should begin to blink rapidly.
- 7. Disconnect from the sensor and exit LpmsControl.
- 8. Now install the new LpmsControl application. The previous LpmsControl application does not need to be un-installed.
- 9. Start LpmsControl and connect to your sensor.
- 10. Choose the "Load parameters from file" function from the calibration menu of LpmsControl to recover the previous sensor calibration results.
- 11. Choose the "Save parameters to sensor" function from the calibration menu of LpmsControl to save the previous sensor calibration results into sensor flash.
- 12. The whole procedure is done. Make sure everything works as expected. If there is anything unexpected, please contact LP-RESEARCH by Email.

### The LpSensor Library

#### **Building Your Application**

The LpSensor library contains classes that allow a user to integrate LPMS devices into their own applications. The library is a Windows 32-bit C++ library for MS Visual C++ (express) 2010. Should you require a binary for the library for other operating systems or 64-bit applications, please contact LP-RESEARCH. Compiling applications that use the LpSensor library requires the following components:

Header files (usually in C:/OpenMAT/include)

LpmsSensorManagerI.hContains the interface for the LpmsSensorManager class.LpmsSensorI.hContains the interface for the LpmsSensor class

| ImuData.h                     | Structure for containing output data from a LPMS device            |  |  |
|-------------------------------|--------------------------------------------------------------------|--|--|
| LpmsDefinitions.h             | Macro definitions for accessing LPMS                               |  |  |
| DeviceListItem.h              | Contains the class definition for an element of a LPMS device list |  |  |
|                               |                                                                    |  |  |
| LIB files (usually in C:/Oper | nMAT/lib/x86)                                                      |  |  |
| LpSensorD.lib                 | LpSensor library (Debug version)                                   |  |  |
| LpSensor.lib                  | LpSensor library (Release version)                                 |  |  |
|                               |                                                                    |  |  |
| DLL files (usually in C:/Ope  | nMAT/lib/x86)                                                      |  |  |
| LpSensorD.dll                 | LpSensor library (Debug version)                                   |  |  |
| LpSensor.dll                  | LpSensor library (Release version)                                 |  |  |
|                               |                                                                    |  |  |
| PCANBasic.dll                 | PeakCAN library DLL for CAN interface communication.               |  |  |
| ftd2xx.dll                    | The FTDI library to communicate with an LPMS over USB.             |  |  |
|                               |                                                                    |  |  |

To compile the application please do the following:

- 1. Include LpmsSensorManagerI.h before you access any LpSensor classes.
- 2. Add LpSensor.lib (or LpSensorD.lib if you are compiling in debug mode) to the ist of linked libraries for your application.
- 3. Make sure that you set a path to LpSensor.dll / LpSensorD.dll, PCANBasic.dll and ftd2xx.dll reside so that the runtime file of your application can access them.

#### **Important Classes**

#### SensorManager

The sensor manager class wraps a number of LpmsSensor instances into one class, handles device discovery and device polling. For user applications the following methods are most commonly used. Please refer to the interface file SensorManagerI.h for more information.

IMPORTANT: An instance of LpmsSensor is returned by the static function LpmsSensorManagerFactory(). See the example listing in the next section for more information how to initialize an LpmsSensorManager object.

| Method name | SensorManager (void)                   |  |
|-------------|----------------------------------------|--|
| Parameters  | none                                   |  |
| Returns     | SensorManager object                   |  |
| Description | Constructor of a SensorManager object. |  |

| Method name | LpSensor* addSensor(int mode, string deviceId)                 |                                                               |                    |  |  |
|-------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------|--|--|
| Parameters  | mode The device type to be connected. The following device     |                                                               |                    |  |  |
|             |                                                                | types are available:                                          |                    |  |  |
|             |                                                                | Macro                                                         | Device type        |  |  |
|             |                                                                | DEVICE_LPMS_B                                                 | LPMS-B             |  |  |
|             |                                                                | DEVICE_LPMS_C                                                 | LPMS-CU (CAN mode) |  |  |
|             |                                                                | DEVICE_LPMS_U                                                 | LPMS-CU (USB mode) |  |  |
|             | deviceId                                                       | deviceId Device ID of the LPMS device. The ID is equal to the |                    |  |  |
|             |                                                                | OpenMAT ID (initially set to 1, user definable).              |                    |  |  |
| Returns     | Pointer to LpSensor object.                                    |                                                               |                    |  |  |
| Description | Adds a sensor device to the list of devices adminstered by the |                                                               |                    |  |  |
|             | SensorManager object.                                          |                                                               |                    |  |  |

| Method name | void removeSensor(LpSensor *sensor)                               |                                                            |  |
|-------------|-------------------------------------------------------------------|------------------------------------------------------------|--|
| Parameters  | sensor Pointer to LpSensor object that is to be removed from the  |                                                            |  |
|             |                                                                   | list of sensors. The call to removeSensor frees the memory |  |
|             |                                                                   | associated with the LpSensor object.                       |  |
| Returns     | none                                                              |                                                            |  |
| Description | Removes a device from the list of currently administered sensors. |                                                            |  |

| Method name | <pre>void listDevices(std::vector<devicelistitem> *v)</devicelistitem></pre> |  |  |
|-------------|------------------------------------------------------------------------------|--|--|
| Parameters  | <b>*v</b> Pointer to a vector containing DeviceListItem objects with         |  |  |
|             | information about LPMS devices that have been discovered                     |  |  |
|             | by the method.                                                               |  |  |
| Returns     | None                                                                         |  |  |
| Description | Lists all connected LPMS devices. The device discovery runs in a             |  |  |
|             | seperate thread.For Bluetooth devices should take several seconds to be      |  |  |
|             | added to the devicelist. CAN bus and USB devices should be added after       |  |  |
|             | around 1s.                                                                   |  |  |

### LpmsSensor

This is a class to access the specific functions and parameters of an LPMS. The most commonly used methods are listed below. Please refer to the interface file LpmSensorI.h for more information.

| Method name | void run(void) |
|-------------|----------------|
|-------------|----------------|

| Parameters  | None                                   |
|-------------|----------------------------------------|
| Returns     | None                                   |
| Description | Starts the data acquisition procedure. |

| Method name | void pause (void)                      |  |
|-------------|----------------------------------------|--|
| Parameters  | None                                   |  |
| Returns     | None                                   |  |
| Description | Pauses the data acquisition procedure. |  |

| Method name | int getSensorStatus(void)            |                                  |  |  |
|-------------|--------------------------------------|----------------------------------|--|--|
| Parameters  | None                                 |                                  |  |  |
| Returns     | Sensor state identifier:             |                                  |  |  |
|             | Macro                                | Sensor state                     |  |  |
|             | SENSOR_STATUS_PAUSED                 | Sensor is currently paused.      |  |  |
|             | SENSOR_STATUS_RUNNING                | Sensor is currently acquiring    |  |  |
|             |                                      | data.                            |  |  |
|             | SENSOR_STATUS_CALIBRATING            | Sensor is currently calibrating. |  |  |
|             | SENSOR_STATUS_ERROR                  | Sensor has detected an error.    |  |  |
|             | SENSOR_STATUS_UPLOADING              | Sensor is currently receiving    |  |  |
|             |                                      | new firmware data.               |  |  |
| Description | Retrieves the current sensor status. |                                  |  |  |

| Method name | int getConnectionStatus(void)            |                         |
|-------------|------------------------------------------|-------------------------|
| Parameters  | None                                     |                         |
| Returns     | Connection status identifier:            |                         |
|             | Macro                                    | Sensor state            |
|             | SENSOR_CONNECTION_CONNECTED              | Sensor is connected.    |
|             | SENSOR_CONNECTION_CONNECTING             | Connection is currently |
|             |                                          | being established.      |
|             | SENSOR_CONNECTION_FAILED                 | Attempt to connect has  |
|             |                                          | failed.                 |
|             | SENSOR_CONNECTION_INTERRUPTED            | Connection has been     |
|             |                                          | interrupted.            |
| Description | Retrieves the current connection status. |                         |

| Method name | void startResetReference(void)                                          |
|-------------|-------------------------------------------------------------------------|
| Parameters  | None                                                                    |
| Returns     | None                                                                    |
| Description | Resets the current accelerometer and magnetometer reference. Please see |
|             | the 'Operation' chapter for details on the reference vector adjustment  |
|             | procedure.                                                              |

| Method name | void startCalibrateGyro(void)                   |
|-------------|-------------------------------------------------|
| Parameters  | None                                            |
| Returns     | None                                            |
| Description | Starts the calibration of the sensor gyroscope. |

| Method name | void startCalibrateMag(void)                     |
|-------------|--------------------------------------------------|
| Parameters  | None                                             |
| Returns     | None                                             |
| Description | Starts the calibration of the LPMS magnetometer. |

| Method name | CalibrationData* getConfigurationData(void)         |
|-------------|-----------------------------------------------------|
| Parameters  | None                                                |
| Returns     | Pointer to CalibrationData object.                  |
| Description | Retrieves the CalibrationData structure containing  |
|             | the configuration parameters of the connected LPMS. |

| Method name | <pre>bool setConfigurationPrm(int parameterIndex, int parameter)</pre> |                                         |
|-------------|------------------------------------------------------------------------|-----------------------------------------|
| Parameters  | parameterIndex                                                         | The parameter to be adjusted.           |
|             | parameter                                                              | The new parameter value.                |
|             | Supported parameterIndex<br>Macro                                      | identifiers:<br>Description             |
|             | PRM_OPENMAT_ID                                                         | Sets the current OpenMAT ID.            |
|             | PRM_FILTER_MODE                                                        | Sets the current filter mode.           |
|             | PRM_PARAMETER_SET                                                      | Changes the current filter              |
|             |                                                                        | preset.                                 |
|             | PRM_GYR_THRESHOLD                                                      | _ENABLE Enables / diables the gyroscope |

| I                                     |                                |
|---------------------------------------|--------------------------------|
|                                       | threshold.                     |
| PRM_MAG_RANGE                         | Modifies the current           |
|                                       | magnetometer sensor range.     |
| PRM_ACC_RANGE                         | Modifies the current           |
|                                       | accelerometer sensor range.    |
| PRM_GYR_RANGE                         | Modifies the current gyroscope |
|                                       | range.                         |
|                                       |                                |
| Supported parameter identifiers for e | each parameter index:          |
| PRM_OPENMAT_ID                        |                                |
| Integer ID number between             | n 1 and 255.                   |
|                                       |                                |
| PRM_FILTER_MODE                       |                                |
| Macro                                 | Description                    |
| FM_GYRO_ONLY                          | Only gyroscope                 |
| FM_GYRO_ACC                           | Gyroscope + accelerometer      |
| FM_GYRO_ACC_MAG_NS                    | Gyroscope + accelerometer +    |
|                                       | magnetometer                   |
|                                       |                                |
| PRM_PARAMETER_SET                     |                                |
| Macro                                 | Description                    |
| LPMS_FILTER_PRM_SET_1                 | Magnetometer correction        |
|                                       | "dynamic" setting.             |
| LPMS_FILTER_PRM_SET_2                 | Strong                         |
| LPMS_FILTER_PRM_SET_3                 | Medium                         |
| LPMS_FILTER_PRM_SET_4                 | Weak                           |
|                                       |                                |
| PRM_GYR_THRESHOLD_ENABLE              |                                |
| Macro                                 | Description                    |
| IMU_GYR_THRESH_DISABLE                | Enable gyr. threshold          |
| IMU_GYR_THRESH_ENABLE                 | Disable gyr. thershold         |
|                                       |                                |
| PRM_GYR_RANGE                         |                                |
| Macro                                 | Description                    |
| GYR_RANGE_250DPS                      | Gyr. Range = 250 deg./s        |
| GYR_RANGE_500DPS                      | Gyr. Range = 500 deg./s        |
|                                       |                                |

|             | GYR_RANGE_2000DPS               | Gyr. Range = 2000 deg./s     |
|-------------|---------------------------------|------------------------------|
|             |                                 |                              |
|             | PRM_ACC_RANGE                   |                              |
|             | Macro                           | Description                  |
|             | ACC_RANGE_2G                    | Acc. range = $2g$            |
|             | ACC_RANGE_4G                    | Acc. range = $4g$            |
|             | ACC_RANGE_8G                    | Acc. range = 8g              |
|             | ACC_RANGE_16G                   | Acc. range = 16g             |
|             |                                 |                              |
|             | PRM_MAG_RANGE                   |                              |
|             | Macro                           | Description                  |
|             | MAG_RANGE_130UT                 | Mag. range = 130uT           |
|             | MAG_RANGE_190UT                 | Mag. range = 190uT           |
|             | MAG_RANGE_250UT                 | Mag. range = 250uT           |
|             | MAG_RANGE_400UT                 | Mag. range $= 400 \text{uT}$ |
|             | MAG_RANGE_470UT                 | Mag. range $= 470 \text{uT}$ |
|             | MAG_RANGE_560UT                 | Mag. range = 560uT           |
|             | MAG_RANGE_810UT                 | Mag. range = 810uT           |
| Returns     | None                            |                              |
| Description | Sets a configuration parameter. |                              |

| Method name | <pre>bool getConfigurationPrm(int parameterIndex, int</pre>            |                                           |
|-------------|------------------------------------------------------------------------|-------------------------------------------|
|             | *parameter)                                                            |                                           |
| Parameters  | parameterIndex                                                         | The parameter to be adjusted.             |
|             | parameter                                                              | Pointer to the retrieved parameter value. |
|             | See setConfigurationPrm method for an explanation of supported paramer |                                           |
|             | indices and parameters.                                                |                                           |
| Returns     | None                                                                   |                                           |
| Description | Retrieves a configuration parameter.                                   |                                           |

| Method name | void resetOrientation(void)                  |
|-------------|----------------------------------------------|
| Parameters  | None                                         |
| Returns     | None                                         |
| Description | Resets the orientation offset of the sensor. |

| Method name void saveCalibrationData(void) |
|--------------------------------------------|
|--------------------------------------------|

| Parameters  | None                                                                     |
|-------------|--------------------------------------------------------------------------|
| Returns     | None                                                                     |
| Description | Starts saving the current parameter settings to the sensor flash memory. |

| Method name | virtual   | <pre>void getCalibratedSensorData(float g[3],</pre> |
|-------------|-----------|-----------------------------------------------------|
|             | float a   | [3], float b[3])                                    |
| Parameters  | g[02]     | Calibrated gyroscope data (x, y, z-axis).           |
|             | a[02]     | Calibrated accelerometer data (x, y, z-axis).       |
|             | b[02]     | Calibrated magnetometer data (x, y, z-axis).        |
| Returns     | None      |                                                     |
| Description | Retrieves | calibrated sensor data (gyroscope, accelerometer,   |
|             | magnetom  | eter).                                              |

| Method name | virtual void getQuaternion(float q[4])               |
|-------------|------------------------------------------------------|
| Parameters  | <b>q[03]</b> Orientation quaternion (qw, qx, qy, qz) |
| Returns     | None                                                 |
| Description | Retrieves the 3d orientation quaternion.             |

| Method name | <pre>virtual void getEulerAngle(float r[3])</pre>     |
|-------------|-------------------------------------------------------|
| Parameters  | <b>r[02]</b> Euler angle vector (around x, y, z-axis) |
| Returns     | None                                                  |
| Description | Retrieves the currently measured 3d Euler angles.     |

| Method name | <pre>virtual void getRotationMatrix(float M[3][3])</pre>  |
|-------------|-----------------------------------------------------------|
| Parameters  | <b>M[02][02]</b> Rotations matrix (row i=02, column j=02) |
| Returns     | None                                                      |
| Description | Retrievs the current rotation matrix.                     |

## Example Code

Connecting to the an LPMS-B device

| 1 | #include "LpmsSensorI.h"                   |
|---|--------------------------------------------|
| 2 | <pre>#include "LpmsSensorManagerI.h"</pre> |
| 3 |                                            |
| 4 | main()                                     |
| 5 | {                                          |

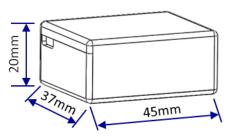
| 6  | // Get a LpmsSensorManager instance                                 |
|----|---------------------------------------------------------------------|
| 7  | LpmsSensorManagerI* manager = SensorManagerFactory();               |
| 8  |                                                                     |
| 9  | // Connect to LPMS-B sensor with address 00:11:22:33:44:55          |
| 10 | <pre>LpmsSensorI* lpms = manager-&gt;addSensor(DEVICE_LPMS_B,</pre> |
|    | "00:11:22:33:44:55");                                               |
| 11 |                                                                     |
| 12 | <pre>while(1) {</pre>                                               |
| 13 | float q[4];                                                         |
| 14 |                                                                     |
| 15 | // Read quaternion data                                             |
| 16 | <pre>lpms-&gt;getQuaternion(q);</pre>                               |
| 17 |                                                                     |
| 18 | // Do something with the data                                       |
| 19 | //                                                                  |
| 20 | }                                                                   |
| 21 |                                                                     |
| 22 | // After doing the work, remove the initialized sensor              |
| 23 | <pre>sm-&gt;removeSensor(lpms);</pre>                               |
| 24 |                                                                     |
| 25 | // Delete LpmsSensorManager object                                  |
| 26 | delete manager;                                                     |
| 27 | }                                                                   |

### Setting and Retrieval of Sensor Parameters

| 1 | /* Setting a sensor parameter. */                                         |
|---|---------------------------------------------------------------------------|
| 2 | <pre>lpmsDevice-&gt;setParameter(PRM_ACC_RANGE, LPMS_ACC_RANGE_8G);</pre> |
| 3 |                                                                           |
| 4 | /* Retrieving a sensor parameter. */                                      |
| 5 | int p;                                                                    |
| 6 | <pre>lpmsDevice-&gt;setParameter(PRM_ACC_RANGE, &amp;p);</pre>            |

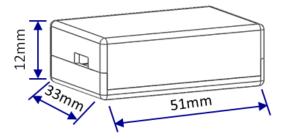
## Sensor and Connection Status Inquiry

| 1 | /* Retrieves current sensor status */      |
|---|--------------------------------------------|
| 2 | <pre>int status = getSensorStatus();</pre> |

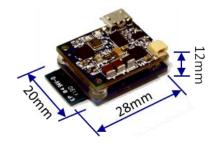

| 3  |                                                                                     |
|----|-------------------------------------------------------------------------------------|
| 4  | switch (status) {                                                                   |
| 5  | case SENSOR_STATUS_RUNNING:                                                         |
| 6  | <pre>std::cout &lt;&lt; "Sensor is running." &lt;&lt; std::endl;</pre>              |
| 7  | break;                                                                              |
| 8  |                                                                                     |
| 9  | case SENSOR_STATUS_PAUSED:                                                          |
| 10 | <pre>std::cout &lt;&lt; "Sensor is paused." &lt;&lt; std::endl;</pre>               |
| 11 | break;                                                                              |
| 12 | }                                                                                   |
| 13 |                                                                                     |
| 14 | <pre>status = lpmsDevice-&gt;getConnectionStatus();</pre>                           |
| 15 |                                                                                     |
| 16 | switch (status) {                                                                   |
| 17 | case SENSOR_CONNECTION_CONNECTING:                                                  |
| 18 | <pre>std::cout &lt;&lt; "Sensor is currently connecting." &lt;&lt; std::endl;</pre> |
| 19 | break;                                                                              |
| 20 |                                                                                     |
| 21 | case SENSOR_CONNECTION_CONNECTED:                                                   |
| 22 | <pre>std::cout &lt;&lt; "Sensor is connected." &lt;&lt; std::endl;</pre>            |
| 23 | break;                                                                              |
| 24 | }                                                                                   |

In case you have any further questions regarding the programming interface please contact LP-RESEARCH directly.

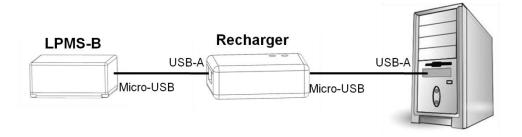
# X. MECHANICAL INFORMATION


## **LPMS-B** Dimension






## **LPMS-B** Recharger Dimension






## **LPMS-B OEM Dimension**



# LPMS-B and Recharger Connection



#### **Please Read Carefully:**

Information in this document is provided solely in connection with LP-RESEARCH products. LP-RESEARCH reserves the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All LP-RESEARCH products are sold pursuant to LP-RESEARCH's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the LP-RESEARCH products and services described herein, and LP-RESEARCH assumes no liability whatsoever relating to the choice, selection or use of the LP-RESEARCH products and services described herein.

UNLESS OTHERWISE SET FORTH IN LP-RESEARCH'S TERMS AND CONDITIONS OF SALE LP-RESEARCH DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF LP-RESEARCH PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LP-RESEARCH PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. LP-RESEARCH PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

© 2013 LP-RESEARCH - All rights reserved

Japan – China – Germany – Korea – Egypt www.lp-research.com