LPMS-CANAL Reference Manual

Version 1.2.7

© 2014 LP-RESEARCH

www.lp-research.com

I. INTRODUCTION

Welcome to the LP-RESEARCH Motion Sensor CAN bus version with aluminum housing (LPMS-CANAL) User's Manual!

In this manual we will try to explain everything you need to know to set up the LPMS-CANAL hardware, install and use its software, as well as getting started with integrating the sensor within your own software project. We have put a lot of effort into making the LPMS-CANAL a great product, but we are always eager to improve and work on new developments. So, if you have any further question or have any comment regarding this manual please feel free to contact us anytime.

For more information on the LPMS-CANAL or other product series, please refer to the flyers, datasheets or user manuals, available from the LP-RESEARCH Inc. website at the following address: <u>http://www.lp-research.com</u>.

II. TABLE OF CONTENTS

I.	INTRODUCTION2		
II.	TABLE OF CONTENTS		
III.	REVISION HISTORY		
IV.	DEVICE OVERVIEW7		
N	Measurement Output7		
Т	Sechnical Background		
C	Communication Methods		
C	Calibration		
Ν	Agnetic Field Distortion Compensation		
Δ	Application Areas		
v	DEVICE SDECIEICATIONS		
v.	DEVICE SPECIFICATIONS		
VI.	CONNECTOR CONFIGURATION11		
VII	I. OPERATION		
P	Powering Up and Operation Modes12		
H	Host Device Communication		
Γ	Data Acquisition		
	Raw Sensor Data		
	Orientation Data		
F	Filter Settings		
	Filter Modes		
	Magnetometer Correction Setting		
	Acceleration Compensation Setting		
	Gyroscope Threshold		
	Gyroscope Auto-calibration Function17		
	Low Pass Filter Setting17		
Т	Trade-offs and Limitations17		
C	Calibration Methods		
	Basic Gyroscope Calibration		

Advanced Gyroscope Calibration	
Magnetometer Calibration	19
Accelerometer Calibration	19
VIII. COMMUNICATION PROTOCOL	21
Establishing a Connection	21
LpCAN Protocol	
Basic Command Introduction	21
Data Format in a Packet Data Field	
Packet Format	
CANOpen Protocol	
Protocol Commands List	
Acknowledged and Not-acknowledged Identifier	
Firmware Update and In-Application-Programmer Upload Com	mand25
Configuration and Status Command	
Mode Switching Command	
Data Transmission Command	
Register Value Save and Reset Command	
Reference Setting and Offset Reset Command	
Self-Test Command	
IMU ID Setting Command	
Gyroscope Settings Command	
Accelerometer Settings Command	
Magnetometer Settings Command	
Filter Settings Command	
CAN Bus Settings Command	
Additional Settings	
IX. OpenMAT	42
Overview	
Introduction	
Application Installation	
LpmsControl Software Operation	
Overview	
GUI Elements	44
Device Discovery	47

X.	MECHANICAL INFORMATION	60
	Example Code	57
	Important Classes	50
	Building Your Application	49
]	The LpSensor Library	49
	How to Opload New Fillinwate	49
	How to Unload New Firmware	/0
	Reset of Orientation and Reference Vectors	48
	Sensor Parameter Adjustment	47
	Connecting and Disconnecting a Device	47

III. REVISION HISTORY

Date	Revision	Changes	
01-Jan-2014	1.2.7	Initial release.	

IV. DEVICE OVERVIEW

Measurement Output

The LP-RESEARCH Motion Sensor CAN bus version with aluminum housing (LPMS-CANAL) is a wired inertial measurement unit. We designed the unit to be water proof so that it can be used in a wide range of industrial applications. The unit can measure orientation in 360 degrees about all three global axes. Measurements are taken digitally and transmitted to a data analysis system in the form of orientation quaternion or Euler angles. Whereas Euler angles are the traditional way of describing the orientation of an object, quaternion allow orientation measurement without encountering the so-called Gimbal's lock by using a four-element vector to express orientation around all axes without being limited by singularities. A more in-depth explanation of the quaternion output of the LPMS-CANAL will follow later on in this manual.

In addition, a pressure sensor is selectable on the LPMS-CANAL for some specific applications, such as GPS navigation enhancement, indoor and outdoor navigation, vertical velocity indication, etc.

Technical Background

To measure the orientation of an object, the sensor internally uses three different sensing units. These units are micro-electro-mechanical system (MEMS) sensors that integrate complex mechanical and electronic capabilities on a miniaturized device. The units used in the LPMS-CANAL for orientation determination are a 3-axis gyroscope (detecting angular velocity), a 3-aixs accelerometer (detecting the directing of the earth's gravity field) and a 3-axis magnetometer to measure the direction of the earth magnetic field. In principle orientation data about all three room axes can be determined by integrating the angular velocity data from the gyroscope. However through the integration step the error from the gyroscope measurements, although it might be very small, has an exponential influence on the calculation result. Therefore we correct the orientation data from the gyroscope with information from the accelerometer (roll and pitch angles) and magnetometer (yaw angle) to calculate orientation information of high accuracy and stability while guaranteeing fast sampling rates. We combine the orientation information from the three sensing units using a complementary filter in conjunction with an extended Kalman filter (EKF). The Kalman filter allows us to reduce the measurement error especially in case of regular movements (e.g. human gait analysis, vehicle vibration analysis etc.). Sampling rates of the sensor can be adjusted to up to 300 Hz internal measurement frequency.

Communication Methods

Data can be transferred either using a CAN Bus network connection. For communication protocols we rely on commonly used open standard protocols: CANOpen implementation or our proprietary LpCAN protocol.

Calibration

For accurate operation the sensor needs to be calibrated. The calibration procedure includes the determination of the gyroscope data offset, gyroscope movement threshold, accelerometer misalignment, accelerometer offset, and magnetometer interference bias and gain. As the earth magnetic field can be distorted by metal or electromagnetic sources within the vicinity of the sensor, the re-calibration of the magnetic sensor and re-calculation of the magnetic reference vector of the sensor might be necessary when using the sensor in different location or under varying experiment environments. Later in this manual we will describe in detail the necessary calibration procedures and measures to be taken to guarantee the accuracy of the measurements taken by the sensor. We tried to automate the calibration procedures as far as possible inside the firmware of the sensor to make the usage as convenient as possible for the users.

Magnetic Field Distortion Compensation

Additionally to the established method of compensating a distorted earth magnetic field by re-adjusting the magnetometer bias and gain, the LPMS-CANAL offers either completely switching off the magnetometer compensation of the gyroscope data or selectively switching the compensation modes between: dynamic, weak, medium and strong magnetometer correction, in places where an earth magnetic field outside the normal limits is being detected. We implemented a special algorithm that allows switching between operation with different modes of magnetometer compensation and without magnetometer compensation without any inconsistencies in the orientation detection. For further adjustment of the calibration parameters to the sensor environment a temperature sensor and pressure sensor have been optionally integrated on the LPMS-CANAL. Data from these indicators can be utilized by the user to correct raw data measurements from the LPMS-CANAL sub-sensors.

Application Areas

The sensor can be effectively used in the field of virtual reality, navigation, robotics, or for measuring vehicle dynamics. If more than one sensor is used for a sensor network the motion of complex objects as necessary in cinematic motion capturing or animation movie production is possible.

V. DEVICE SPECIFICATIONS

Please see the below table of the summary of sensor specification. Please refer to the section "X. *MECHNICALINFORMATION*" for detail introduction of package layout.

Wired Interface	CAN Bus		
Maximum baudrate	1Mbit/s		
Communication protocol	LpCAN / CANOpen		
Size	48 x 40 x 23 mm		
Weight	67.5 g		
Orientation	360 ⁰ about all axes		
Resolution	$<$ 0.05 $^{\circ}$		
Accuracy	< 2 °RMS (dynamic), < 0.5 (static)		
Accelerometer	3-axis, ±20 / ±40 / ±80 / ±160 m/s ; 16 bits		
Gyroscope	3-axis, $\pm 250 / \pm 500 / \pm 2000$ °/s, 16 bits		
Magnetometer	3-axis, ±130 ~ ±810 uT, 16 bits		
Pressure sensor	300 ~ 1100 hPa *		
Data output format	Raw data / Euler angle / Quaternion		
Sampling rate	0 ~ 300 Hz.		
Latency	5ms		
Power consumption	165 mW		
Supply voltage (Vcc)	4∼ 18 V DC		
Connector	SACC-DSI-MS-5CON-PG 9/0,5 SCO, M12		
Case material	Aluminum		
Temperature range	- 40 ∼ +80 °C		
Software	C++ library for Windows, Java library for Android, LpmsControl		
	utility software for Windows, Open Motion Analysis Toolkit		
	(OpenMAT) for Windows		

*The pressure sensor is optional and can be added on LPMS-CANAL, which depends on the requirement from users. Please contact us for more information about this.

VI. CONNECTOR CONFIGURATION

Connector pin-out is as below.

Pin description:	Pin no.	1	2	3	4	5
	Function	CAN_SHLD	CAN_V+	CAN_GND	CAN_H	CAN_L
	CAN_SHLD: not connected					
	CAN_V+: External positive power supply $4 = 5$			3 •		
	CAN_GND: Ground $\begin{pmatrix} 1 & 0 & 2 \\ & 0 & 0 \end{pmatrix}$					
	CAN_H: CAN_H bus line(dominant high)			•		
	CAN_L: CAN_L bus line(dominant low)					
Connector type:	Phoenix Contact: SACC-DSI-MS-5CON-PG 9/0,5 SCO, M12					
Pared cable type:	Phoenix Contact: SAC-5P- 1,5-PUR/M12FS SH					

VII. OPERATION

Powering Up and Operation Modes

The LPMS-CANAL sensor is switched on by connecting the sensor with a power source via the power lines of the CAN bus connector. There are 3 different modes for operation:

Mode	Description			
Command mode	In command mode the functionality of the sensor is accessed			
	command-by-command. Also data is transferred from the sensor to			
	the user by a special command. This mode is suitable for making			
	adjustments to the parameter settings of the sensor and synchronized			
	data-transfer.			
Streaming mode (default)	In streaming mode data is continuously sent from the sensor to the			
	host. This mode is suitable for simple and high-speed data			
	acquisition. Sensor parameters cannot be set in this mode.			
	The data is sent out by CANOpen protocol.			
Sleep mode (reserved)	Sleep mode is the power-saving state of the sensor. The sensor can be			
	woken up by switching into streaming mode or command mode. In			
	this mode no data can be read from the sensor.			

Please see the table below for the available options depending on the user's actions:

User action	Description		
Sensor power-on	The sensor is now in CANOpen streaming mode and continuously		
	sends data over the CAN bus using the CANOpen protocol.		
User sends data to sensor	Sensor is always waiting for "Goto command mode" instructions to		
using LpCAN protocol	switch to command mode over the CAN port with LpCAN protocol.		
	This is also the way the LpmsControl application communicates with		
	the sensor.		

Host Device Communication

Users should be able to communicate with LPMS-CANAL using any standard CAN interface. The CAN message uses standard 11 bits identifier and 8 bytes of data. The default connection baudrate is

OPERATION

1Mbit/s (For long distance communication, the 120 ohm resistors might be needed while using 1Mbit/s baudrate).

Data Acquisition

For data acquisition, all the communications with the device needs to be according to CANOpen or LpCAN protocol, which is introduced in section "*VIII. COMMUNICATION PROTOCOL*".

Raw Sensor Data

The LPMS-CANAL contains three MEMS sensors: A gyroscope, an accelerometer and a magnetometer. The raw data from all three of these sensors can be accessed by the host system based on the LpCAN/CANOpen protocol. This data can be used to check if the current acquisition range of the sensors is sufficient and if the different sensors generate correct output. Users can also implement their own sensor fusion algorithms using the raw sensor data values. Sensor range and data sampling speed can be set by sending commands to the firmware. Details will be explained later on in this manual at section of "VIII. COMMUNICATION PROTOCOL".

The LPMS-CANAL is calibrated by default, but it might be necessary to recalibrate the sensors if the measurement environment changes (e.g. different ambient electromagnetic field, strong temperature changes). Please refer to the following sections for a detailed introduction of sensor calibration methods.

Orientation Data

The LPMS-CANAL has two orientation output formats: quaternion and Euler angle. As the Euler angle representation of orientation is subject to the Gimbal lock, we strongly recommend users to use the quaternion representation for the orientation calculation where possible.

Filter Settings

Data from the three MEMS sensors is combined using an extended complementary Kalman filter (LP-Filter) to calculate the orientation data (orientation quaternion and Euler angles). To make the filter operate correctly, its measurement parameters need to be set in an appropriate way.

Filter Modes

First, the mode of the filter needs to be selected, which can be set by LpmsControl software or firmware commands. The following filter modes are available:

Filter mode	Description		
Gyroscope only	Only the data from the gyroscope is used to calculate the orientation data		
	output from the sensor. In this mode the orientation data can be calculated		
	very quickly and with little noise. However, a strong drift of the acquired		
	values can occur due to the inherent bias problem of gyroscope. This mode		
	should therefore be only used for cases in which a frequent reset of the		
	zero-angle position is allowed.		
Gyroscope +	The orientation data that is calculated from the gyroscope is corrected by the		
accelerometer	accelerometer data based on quaternion representation. The accelerometer		
(default mode)	acquires accurate information about the roll and pitch orientation regarded		
	with the earth gravity vector. The result of the correction is therefore		
	orientation information that has very little error on the roll and pitch axis, the		
	yaw axis however is still affected by the drift of the un-corrected gyroscope		
	data.		
	This mode might be significant useful when there is a strong magnetic		
	interference that can hardly be efficiently calibrated exiting around the sensor		
	and only the roll and pitch information is interest to the users.		
Gyroscope +	Orientation data from the gyroscope that has been corrected by the		
accelerometer +	accelerometer output as previously described is additionally modified by the		
magnetometer	direction of the earth magnetic field. This results in accurate orientation		
	information for all three axes. This mode delivers good speed and accuracy		
	for roll, pitch and yaw. In this mode, (un-calibrated) distortions of the earth		
	magnetic will affect the accuracy of the orientation measurement.		
Accelerometer +	Orientation is directly calculated by the combination of the data from		
magnetometer	accelerometer and magnetometer using Euler representation. Therefore it has		
(Euler only)	the singularity problem at certain orientations. Based on the information of		
	gravity in the vertical frame and the geomagnetic field vector in horizontal		
	frame, the roll, pitch and yaw angle can be achieved based on the readings		
	from accelerometer and magnetometer. This mode is suitable for the		
	application of small motion and limited magnetic distortion.		
Gyroscope +	The orientation data that is calculated from the gyroscope is corrected by the		
accelerometer	accelerometer data based on Euler representation. Therefore it has the		
(Euler only)	singularity problem at certain orientations. The accelerometer acquires		
	accurate information about the roll and pitch orientation regarded with the		
	earth gravity vector. The result of the correction is therefore orientation		
	information that has very little error on the roll and pitch axis, the yaw axis		

however is still affected by the drift of the un-corrected gyroscope data.
This mode might be significant useful when there is a strong magnetic
interference that can hardly be efficiently calibrated exiting around the sensor
and only the roll and pitch information is interest to the users.

Magnetometer Correction Setting

The amount by which the magnetometer corrects the orientation output of the sensor can be controlled by the magnetic correction settings. The following options are selectable through LpmsControl or directly through the firmware commands.

Parameter presets	Description
Dynamic (default)	The value "Dynamic" means the magnetic correction inside the filter is performed dynamically together with the acceleration data according to the variance of magnetic interference. This parameter set is suitable for the situation when the magnetic interference keeps changing.
Weak	The value "weak" means the magnetic correction inside the filter has little impact on the orientation output. Sensor orientation is calculated mainly from the acceleration / gyroscope data. This parameter set is suitable for situations when strong magnetic interference that cannot be compensated through calibration appear regularly.
Medium	With the "medium" correction setting the impact of the magnetometer readings is still relatively weak, but stronger than in "weak" mode. This mode should be suitable for environments with occasional irregular field distortions.
Strong	In this mode the magnetometer readings have a strong direct impact on the orientation output. It can be used in environments with a calibrate-able constant field distortion or in "clean" fields (outside buildings with no metal parts or strong power sources in the vicinity of the sensor). Yaw orientation measurement in world coordinates will be most accurate in this mode.

Acceleration Compensation Setting

The amount by which the accelerometer corrects the orientation output of the sensor can be controlled by both linear acceleration and centripetal acceleration settings. The following options are selectable through LpmsControl or directly through the firmware commands.

Parameter presets	Description		
Off	There is no linear acceleration compensation for the sensor fusion		
	in this mode. This parameter set is suitable for situations when		
	there is no linear acceleration appears.		
Weak	The value "weak" means the linear acceleration correction inside		
	the filter has little dynamic impact on the orientation output. This		
	parameter set is suitable for situations when linear acceleration		
	appears regularly and slightly.		
Strong (default)	The value "Strong" means the linear acceleration correction inside		
	the filter has strong dynamic impact on the orientation output. This		
	parameter set is suitable for situations when linear acceleration		
	appears regularly and strongly.		

Linear Acceleration Correction Settings

Rotational Acceleration Correction Settings

Parameter presets	Description				
Disable	There is no rotational acceleration compensation for the sensor				
	fusion in this mode.				
Enable (default)	There is dynamic rotational acceleration compensation for the				
	sensor fusion in this mode.				

Gyroscope Threshold

The input from the gyroscope can be thresholded so that the sensor orientation data is only updated when the sensor is moved. This threshold is automatically determined during gyroscope calibration.

Parameter preset	Description
Enable	Switches gyroscope threshold on.
Disable (default)	Switches gyroscope threshold off.

Gyroscope Auto-calibration Function

The selection of the following parameter values allows the users to enable or disable the gyroscope auto calibration function. In auto calibration mode the filter is automatically detects if the sensor is moving or not. If the sensor stays still for a certain time, the currently sampled gyroscope data will be used to re-calculate the gyroscope offset. This function is significant useful when the user is using the "Gyroscope only" filter mode, and most the time of the system stays still. Using this function will reduce the drift problem of the gyroscope.

Parameter preset	Description
Enable (default)	Switch gyroscope auto-calibration on.
Disable	Switch gyroscope auto-calibration off.

Low Pass Filter Setting

The selection of the following parameter values allows the users to further implement a simple low pass filter for smoothing the output data after the sensor fusion algorithm. The low pass filter is based on the following formula: $X_i = (1-a)^* X_{i-1} + a^* U_i$, where *a* is the coefficient listed in the following table, *U* is the input.

Parameter preset	Description
Off (default)	No filter implemented.
0.1	a = 0.1
0.05	a = 0.05
0.01	<i>a</i> = 0.01
0.005	a = 0.005
0.001	a = 0.001

Trade-offs and Limitations

Although we have put (and still do) a lot of effort into the design of the LPMS-CANAL, there are a few limitations of the sensor that need to be taken into account when using the device. The accuracy of the sensor is limited by the electronic noise level of the MEMS sensors used in the LPMS-CANAL. Although the sensor data acquisition speeds for gyroscope, accelerometer and magnetometer are more than 500Hz, but the data output frequency of the whole system is limited to a certain frequency (up to 300Hz). The parameters of the filter that fuses the data from the gyroscope, magnetometer and accelerometer need to be adjusted well, in order to achieve measurements with maximum accuracy. Furthermore, in case the sensor is used in changing environments, the sensor

occasionally might need to be re-calibrated. The greatest drawback of the measurement principle of the sensor certainly is its affectability by a deformed earth magnetic field (in the vicinity of hard / soft iron, electric motors etc.). In such situations the use of the filter mode and parameters of the filter must be well considered.

Calibration Methods

Basic Gyroscope Calibration

When the sensor is resting the output data of the gyroscope should be around zero. The raw data from the gyroscope sensor has a constant bias of a certain value. To determine this value please follow the following calibration procedure:

Step	Description
1	If it is not already switched on, power up the LPMS-CANAL device.
2	Put the sensor in a resting (non-moving) position.
3	Connect to the sensor.
4	Trigger the gyroscope calibration procedure either through a firmware command or using
	the "Calibrate gyroscope" function in LpmsControl software.
5	The gyroscope calibration will take around 30s. After that the gyroscope is calibrated,
	normal operation can be resumed.

Additionally to the gyroscope bias, the gyroscope threshold value will be adjusted during this calibration procedure. By default the use of the gyroscope threshold is disabled. It can be enabled by sending a firmware command or using the LpmsControl software. The gyro auto calibration function is enabled by default.

Advanced Gyroscope Calibration

The gain and misalignment parameters of gyroscope can be further calibrated under the following instructions by expert users.

Step	Description
1	If it is not already switched on, power up the LPMS-CANAL device.
2	Put the sensor on a turntable which is placed horizontally.
3	Set the rotating rate of the turntable to 45rpm.
4	Trigger the gyroscope misalignment calibration procedure either through a firmware
	command or using the "Calibrate gyr. misalignment" function in LpmsControl software.
5	Following the guideline of pop out window, to set the x axis upwards, and start the

	turntable until the x axis calibration is finished			
6	To set the y axis upwards, and start the turntable until the y axis calibration is finished			
7	To set the z axis upwards, and start the turntable until the z axis calibration is finished			
	After finishing the above procedures the gyroscope misalignment matrix and gain values			
	will be re-calculated. This finishes the gyroscope advanced calibration.			

Magnetometer Calibration

During the magnetometer calibration procedure several parameters are to be determined: magnetometer bias and gain on the X, Y and Z-axis; length and direction of the geomagnetic field vector. In most environments the earth magnetic field is influenced by electromagnetic noise sources such as power lines, metal etc. As a result the magnetic field becomes de-centered and deformed. During the magnetometer calibration the amount of de-centering and deformed as well as the average length of the magnetic field vector is calculated. These parameters are tuned automatically using the calibration procedures in the LpmsControl software:

Step	Description				
1	If it is not already switched on, power up the LPMS-CANAL device.				
2	If it is not already connected, connect to the sensor.				
3	Start the magnetometer calibration using the LpmsControl software.				
4	Rotate the sensor around its yaw axis for 2~3 rotations.				
5	Rotate the sensor around its pitch axis for 2~3 rotations.				
6	Rotate the sensor around its roll axis for 2~3 rotations.				
7	Rotate the sensor randomly to acquire data as much as possible from different directions.				
8	The calibration procedure finished automatically after 30 seconds. After that the				
	magnetometer has been calibrated.				

Accelerometer Calibration

The misalignment of the accelerometer relative to the casing of the LPMS-CANAL device is expressed by the so called misalignment matrix. Using the LpmsControl software this misalignment matrix can be calibrated by the user. In the mean time, the offsets of the accelerometer can be also evaluated. Whereas the usage of the LpmsControl software is explained in more detail in the *"LpmsControl Software Operation"* section, the calibration procedure consists of the following steps:

Step	Description
1	If it is not already switched on, power up the LPMS-CANAL device.
2	If it is not already connected, connect to the sensor.
3	Start the accelerometer misalignment calibration using the LpmsControl software. See

	"LpmsControl Software Operation" section.			
4	Fix the sensor to a horizontal surface with the Z-axis pointing upwards.			
5	Fix the sensor to a horizontal surface with the Z-axis pointing downwards.			
6	Fix the sensor to a horizontal surface with the X-axis pointing upwards.			
7	Fix the sensor to a horizontal surface with the X-axis pointing downwards.			
8	Fix the sensor to a horizontal surface with the Y-axis pointing upwards.			
9	Fix the sensor to a horizontal surface with the Y-axis pointing downwards.			
10	After finishing the above procedures the accelerometer misalignment matrix and offset			
	values will be re-calculated. This finishes the accelerometer calibration.			

VIII. COMMUNICATION PROTOCOL

Establishing a Connection

There are two ways to communicate with LPMS-CANAL:

- 1. After powering up the sensor by default continuously streams measurement data over the CAN bus using the CANOpen protocol. For a short explanation of our CANOpen implementation please read further below. In this mode it is not necessary to send any commands to the sensor. The sensor will just send the measurement values non-stop over the CAN bus. Which values are sent, as well as the other measurement parameters can be set using the LpmControl application and then saved to the flash memory of the sensor. Please don't forget that the sensor needs to be powered down once after using LpmsControl to be returned into its default data streaming mode. Use this method, if you simply want to read data from the sensor.
- 2. More complex communication can be achieved with the LpCAN protocol. This protocol allows the user not only to read data from the sensor, but also access the sensors parameter registers and settings. Use this method, if switching between filter modes, ranges etc. is required for your application.

In this manual the LpBus and LpCAN protocol will be explained first. Please skip the next two sections, if you are just interested in reading sensor data via the CAN bus.

LpCAN Protocol

To exchange data with LPMS-CANAL via CAN bus interface based on LpCAN protocol.

A regular LpCAN message is structured as shown below:

11-bit CAN identifier	The CAN identifier of a CAN message. This identifier is set to		
	the value 514h for all LpCAN transmissions.		
8 data bytes	Contains the actual data to be transmitted in a CAN message.		

Basic Command Introduction

The communication packet has two basic command types, GET and SET, that are sent from a host (PC, mobile data logging unit etc.) to a client (LPMS-CANAL device). Later in this manual we will show a description of all supported commands to the sensor, their type, contained data etc.

GET Commands

Data from the client is read using GET requests. A GET request usually contains no data. The answer from the client to a GET request contains the requested data.

SET Commands

Data registers of the client are written using SET requests. A SET command from the host contains the data to be set. The answer from the client is an ACK command feedback for a successful write, or NACK command feedback for a failure to set the register occurred.

Data Format in a Packet Data Field

Generally data is sent in little-endian format, low order byte first, high order byte last. Data in the data fields of a packet can be encoded in several ways, depending on the type of information to be transmitted. In the following we list the most common data types. Other command-specific data types are explained in the command reference.

Transmission order	0	1	2	3	
Integer word, byte number	0 (LSB)	1	2	3 (MSB)	
32-bit integer 3-component vector (LENGTH = 12 bytes)					
Transmission order	0	1	2	3	
Vector component 1, byte number	0 (LSB)	1	2	3 (MSB)	
Transmission order	4	5	6	7	
Vector component 2, byte number	0 (LSB)	1	2	3 (MSB)	
Transmission order	8	9	10	11	
Vector component 3, byte number	0 (LSB)	1	2	3 (MSB)	

32-bit integer values (LENGTH = 4 bytes)

32-bit float value encoded as integer (LENGTH = 4 bytes)

Transmission order	0	1	2	3
Integer-encoded float, byte number	0 (LSB)	1	2	3 (MSB)

32-bit float 3-component vector (LENGTH = 12 byte)

Transmission order	0	1	2	3
Vector component 1, byte number	0 (LSB)	1	2	3 (MSB)
Transmission order	4	5	6	7
Vector component 2, byte number	0 (LSB)	1	2	3 (MSB)
Transmission order	8	9	10	11

Vector component 3, byte number	0 (LSB)	1	2	3 (MSB)
---------------------------------	---------	---	---	---------

Packet Format

An example packet with 4 data bytes showed in the following CAN messages:

CAN Message #1:

Byte no.	Name	Description
0	Packet start (3Ah)	Mark of the beginning of a data packet.
1	OpenMATID	Contains the low byte of the OpenMAT ID of the sensor to be
	byte 1	communicated with. The default value of this ID is 1. The host
		sends out a GET / SET request to a specific LPMS-CU sensor by
		using this ID, and the client answers to request alsowith the same
		ID. This ID can be adjusted by sending a SET command to the
		sensor firmware.
2	OpenMAT ID	High byte of the OpenMAT ID of the sensor.
	byte 2	
3	Command no.	Contains the low byte of the command to be performed by the
	byte 1	data transmission.
4	Command no.	High byte of the command number.
	byte 2	
5	Packet data length	Contains the low byte of the packet data length to be transmitted
	byte 1	in the packet data field (in this example 4)
6	Packet data length	High byte of the data length to be transmitted (in this example 0)
	byte 2	
7	Packet data	Packet data byte 0

CAN Message #2:

Byte no.	Name	Description
0	Packet data	Packet data byte 1
1	Packet data	Packet data byte 2
2	Packet data	Packet data byte 3
3	LRC byte 1	The low byte of LRC check-sum.
4	LRC byte 2	High byte of LRC check-sum.
5	Termination byte 1	0Dh
6	Termination byte 2	0Ah
7	Not used	0

The number of messages needed to contain the data depends on the length of the data to be transmitted. The last message of a set is truncated to be just long enough to transport all of the remaining data (in the example 7 bytes). The unused bytes of a message are filled up with 0.

CANOpen Protocol

After the sensor is powered-up, it will by default start streaming sensor data in CANOpen format. Our CANOpen implementation consists of 4 TPDO (Transmission Data Process Object) messages and a heartbeat message that are transmitted over the CAN bus. Sensor data can be assigned to specific messages using the LpmsControl application. The frequency of the CANOpen heartbeat message is adjustable between 0.1 Hz and 2 Hz. For details on how to adjust parameters using LpmsControl, please see the next chapter.

CANOpen data is continuously sent from the sensor to the host with the streaming frequency selected in the LpmsControl application at the selected baudrate. The data to be transmitted can be selected to adjust the bus bandwidth used by the LPMS system. All transmitted values are in IEEE754 32-bit integer encoded floating point format. Please see an overview of the CANOpen messages below:

Message ID	Description
180h + IMU ID	CANOpen TPDO 1. Freely assignable. Data in IEEE754 format.
280h + IMU ID	CANOpen TPDO 2. Freely assignable. Data in IEEE754 format.
380h + IMU ID	CANOpen TPDO 3. Freely assignable. Data in IEEE754 format.
480h + IMU ID	CANOpen TPDO 4. Freely assignable. Data in IEEE754 format.
700h + IMU ID	If the sensor is in operational state, this message contains one
	byte with value 5h. If the sensor is stopped due to an error, the
	value is 4h.

Protocol Commands List

If a user connects to LPMS-CANAL using LpCAN protocol, he can access the sensor functionality using the commands in the list below.

Acknowledged and Not-acknowledged Identifier

Command No.	Command description
(decimal values)	
0	REPLY_ACK (acknowledged). Confirms a successful SET command.
1	REPLY_NACK (not-acknowledged) Reports an error during processing a SET command.

Firmware Update and In-Application-Programmer Upload Command

2	Start the firmware update process.					
	IMPORTANT: By not correctly uploading a firmware file the sensor might become					
	in-operable. In normal cases please use the LpmsControl software to upload new					
	firmware. Also please only use firmware packages that have been authorized by					
	LP-RESEARCH.					
	Packet data: Firmware data					
	Data format	Firmware binary file separated into 256 byte				
		chunks for each update packet.				
	Macro name:	UPDATE_FIRMWARE				
	Response:	ACK (success) or NACK (error) for each				
		transmitted packet.				
3	"RESERVED" This command is reserved by LP-RESEARCH.					
	Start the in-appli	cation programmer (IAP) update process.				
	Packet data:	IAP data				
	Data format	IAP binary file separated into 256 byte				
		chunks for each update packet.				
	Macro name:	UPDATE_IAP				
	Response:	ACK (success) or NACK (error) for each				
		transmitted packet.				

Configuration and Status Command

4	Get the current value of	f the config	uration register of the sensor. The configuration word	
	can ONLY be read. The different parameters are set by their respective SET commands.			
	E.g. SET_TRANSMIT_DATA for defining which data is transmitted from the sensor.			
	Packet data:	Configura	tion word. Each bit represents the state of one	
		configurat	tion parameter.	
	Return format:	32-bit integer		
		Bit	Reported State / Parameter	
		0 - 2	Stream frequency setting (see	
			SET_STREAM_FREQ)	
		3 - 8	Reserved	
		9	Pressure data transmission enabled	
		10	Magnetometer data transmission enabled	
		11	Accelerometer data transmission enabled	
		12	Gyroscope data transmission enabled	
		13	Temperature output enabled	
		14	Heave motion output enabled	
		15	Reserved	
		16	Angular velocity output enabled	
		17	Euler angle data transmission enabled	
		18	Quaternion orientation output enabled	
		19	Output enabled	
		20	Dynamic magnetometer correction enabled	
		21	Linear acceleration output enabled	
		22	Reserved	
		23	Gyroscope threshold enabled	
		24	Magnetometer compensation enabled	
		25	Accelerometer compensation enabled	
		26	Reserved	
		27	Reserved	
		28	Reserved	
		29	Reserved	
		30	Gyroscope auto-calibration enabled	
		31	Reserved	
	Macro name:	GET_CO	NFIG	

5	Get the current value of	of the status re	egister of the LPMS-CANAL device. The status word
	can ONLY be read.		
	Packet data:	Status indic	cator. Each bit represents the state of one status
		parameter.	
	Return format:	32-bit integ	ger
		Bit	Indicated state
		0	COMMAND mode enabled
		1	STREAM mode enabled
		2	SLEEP mode enabled
		3	Gyroscope calibration on
		4	Reserved
		5	Gyroscope initialization failed
		6	Accelerometer initialization failed
		7	Magnetometer initialization failed
		8	Pressure sensor initialization failed
		9	Gyroscope unresponsive
		10	Accelerometer unresponsive
		11	Magnetometer unresponsive
		12	Flash write failed
		13	Reserved
		14	Set broadcast frequency failed
		15-31	reserved
	Macro name:	GET_STAT	TUS

Mode Switching Command

6	Switch to command mode. In command mode the user can issue commands to the			
	firmware to perform calibration, set parameters etc.			
	Packet data: none			
	Macro name: GOTO_COMMAND_MODE			
	Response: ACK (success) or NACK (error)			
7	Switch to streaming mode. In this mode data is continuously streamed from the sensor,			
	and all other commands cannot be performed until the sensor receives the			
	GOTO_COMMAND_MODE command.			
	Packet data: none			

	Macro name:	GOTO_STREAM_MODE		
	Response:	ACK (success) or NACK (error)		
8	Switch to sleep mode. The purpose of the sleep mode is to reduce the power consumption			
	of the sensor. Once in sleep mode, no commands can be issued to the sensor until it is			
	woken up by switching back into command mode or streaming mode.			
	Packet data:	none		
	Macro name:	GOTO_SLEEP_MODE		
	Response:	ACK (success) or NACK (error)		

Data Transmission Command

9	Get the latest set of sensor data. The format of the sensor data depends on the transm			ta depends on the transmission		
	settings (SET_TRANSM	IIT_DATA)	. The currently set for	mat can be retrieved with the		
	sensor configuration word.					
	IMPORTANT: In the current version of the firmware calibrated accelerometer data as well as calibrated magnetometer data will always be transmitted. As these values are necessary					
	for the calibration of the	sensor, they	v can at the moment not	be switched off.		
	This format is also used	in streamin	g mode to continuously	y send data from the sensor to		
	the host.					
	Packet data:	Sensor data	a. The data always has t	he same order. Depending on		
		the enabled	l transmission data, chui	nks are inserted or left out.		
	Return format:	Raw sensor	r data chunk			
		Chunk	Data type	Sensor data		
		number				
		1	Float	Timestamp (ms)		
		2	Float 3-vector	Calibrated gyroscope data		
				[deg/s]		
		3	Float 3-vector	Calibrated accelerometer		
				data [m/s ²]		
		4	Float 3-vector	Calibrated magnetometer		
				data [µT]		
		5	Float 3-vector	Angular velocity [deg/s]		
		6	Float 4-vector	Orientation quaternion		
				[normalized]		
		7	Float 3-vector	Euler angle data [deg.]		
		8	Float 3-vector	Linear acceleration data		

				$[m/s^2]$		
		9	Float	Barometric pressure		
				[mPa]		
		10	Float	Heave motion [m] (if		
				enabled)		
	Macro name:	GET_	SENSOR_DATA		-	
10	Set the data that is	transmitted	from the sensor in s	treaming mode or when retrieving da	ata	
	through the GET_S	SENSOR_DA	ATA command.	ATA command.		
	Packet data:	Data sele	ction indicator			
	Data format:	32-bit int	eger. The flags to sy	witch data chunks on (set the bit to 1	.)	
		and off (s	set the bit to 0) are t	he same as in the configuration wor	d	
		(see SET	_CONFIG).		_	
		Bit	Reported State	Parameter		
		9	Pressure data tran	nsmission enabled		
		10	Magnetometer da	Magnetometer data transmission enabled		
		11	Accelerometer data transmission enabled			
		12	Gyroscope data transmission enabled			
		13	Temperature output enabled			
		14	Heave motion output enabled			
		16	Angular velocity output enabled			
		17	Euler angle data transmission enabled			
		18	Quaternion orien	tation output enabled		
		19	Altitude output e	Altitude output enabled		
		21	Linear acceleration	on output enabled		
	Macro name:	SET_TRA	ANSMIT_DATA			
	Response:	ACK (suc	ccess) or NACK (err	or)		
	Default value:	Gyroscop	be, accelerometer, m	agnetometer and quaternion data.		
11	Set the timing in	which stre	eaming data is sen	t to the host. Please note that his	gh	
	frequencies might	be not pract	tically applicable du	e to limitations of the communication	on	
	interface. Check th	e current bai	udrate before setting	this parameter.		
	Packet data:	Update fr	requency identifier			
	Format:	32-bit int	eger			
		Frequen	cy (Hz)	Identifier		
		5		5		

		10	10		
		30	30		
		50	50		
		100	100		
		200	200		
		300	300		
		500	500		
	Macro name:	SET_STREAM_FREQ			
	Response:	ACK (success) or NACK (error)			
	Default value:	100 Hz			
12	Get the current roll a	angle in radians.			
	Packet data:Roll angle				
	Return format:	32-bit integer coded float value.			
	Macro name:	GET_ROLL			
13	Get the current pitch	angle in radians.			
	Packet data:	Pitch angle			
	Return format: 32-bit integer coded float value.				
	Macro name:	acro name: GET_PITCH			
14	Get the current yaw	angle in radians.			
	Packet data:	et data: Yaw angle			
	Return format:	format: 32-bit integer coded float value.			
	Macro name:	e: GET_YAW			

Register Value Save and Reset Command

15	Write the currently set parameters to flash memory.				
	Packet data: None				
	Macro name:	acro name: WRITE_REGISTERS			
	Response:	ACK (success) or NACK (error)			
16	Reset the LPMS parameters to factory default values. Please note that upon issuing this				
	command your currently set parameters will be erased.				
	Packet data: none				

Macro name:	RESTORE_FACTORY_VALUE
Response:	ACK (success) or NACK (error)

Reference Setting and Offset Reset Command

17	Set the accelerometer and magnetometer reference vectors.			
	Packet data: None			
	Macro name:	RESET_REFERENCE		
	Response:	ACK (success) or NACK (error)		
18	Set the orientation offset (the value that is subtracted from the acquired orientation value			
	after a measurement) to the currently measured orientation. This effectively resets the zero			
	orientation of the	e sensor to the current orientation.		
	Packet data: none			
	Macro name:	Macro name: SET_OFFSET		
	Response:	ACK (success) or NACK (error)		

Self-Test Command

19	Initiate the self-test. During the self test the sensor automatically rotates about the three			
	room axes. To simulate realistic circumstances an artificial offset is applied to the			
	magnetometer and the gyroscope values.			
	Packet data: none			
	Macro name: SELF_TEST			
	Response:	ACK (success) or NACK (error)		

IMU ID Setting Command

20	Set the OpenMAT ID of the LPMS-CANAL.			
	Packet data:	OpenMAT ID		
	Data format:	32-bit integer		
	Macro name:	SET_IMU_ID		
	Response:	ACK (success) or NACK (error)		
	Default value:	1		
21	Get the ID (OpenMA	AT ID) of the device		
	Packet data:	The ID of the IMU device		
	Return format:	32-bit integer		
	Macro name:	GET_IMU_ID		

r

-

Gyroscope Settings Command

22	Start the calibration	on procedure of the gyroscope sensor. Details of the gyroscope				
	calibration procedu	are are described in the Operation – Calibration Methods section of this			of this	
	manual. The calibra	ation takes about 5s.				
	Packet data:	none				
	Macro name:	START_GYR_CALIBRATION				
	Response:	ACK (success) or NACK (error)				
23 Enable or disable auto-calibration of the gyroscope.						
	Packet data:	Gyroscope auto-calibration enable / disable identifier				
	Format:	32-bit integer			_	
		State	Value			
		Disable	0x0000	00000		
		Enable	0x0000	00001		
	Macro name:	ENABLE_GYR_AUT	OCAL		-	
	Response:	ACK (success) or NACK (error)				
	Default value:	Disable				
24	Enable or disable g	yroscope threshold.				
	Packet data:	Gyroscope threshold e	nable / d	isable identifie	r	
	Format:	32-bit integer	1		1	
		State	Value			
		Disable	0x0000	00000		
		Enable	0x0000	00001		
	Macro name:	ENABLE_GYR_THR	ES			
	Response:	ACK (success) or NA	CK (error	r)		
	Default value:	Disable				
25	Set the current range	a of the gyroscope				
25	Dackat data:	Gyroscope range iden	tifier			
	Format:	32-bit integer				
	r or mat.			Identifier		
		250		250		
		500		500		
		2000		2000		
		2000		2000		

	Macro name:	SET_GYR_RANGE	
	Response:	ACK (success) or NACK (error)	
	Default value:	2000 deg/s	
26 Get current gyroscope range.			
	Packet data:	Gyroscope range indicator	
	Return format:	32-bit integer	
	Macro name:	GET GYR RANGE	

Accelerometer Settings Command

27	Set the accelerometer bias.		
	Packet data:	Accelerometer bias (X, Y, Z-axis)	
	Format:	32-bit integer encoded float 3-component vector	
	Macro name:	SET_ACC_BIAS	
	Response:	ACK (success) or NACK (error)	
	Default value:	(0.0, 0.0, 0.0)	
28	Get the current acce	elerometer bias vector.	
	Packet data:	Accelerometer bias vector	
	Return format:	32-bit integer encoded float 3-component vector	
	Macro name:	GET_ACC_BIAS	
29	Set the accelerometer alignment matrix.		
	Packet data:	Alignment matrix	
	Format:	32-bit integer encoded float 3 x 3 matrix	
	Macro name:	SET_ACC_ALIG	
	Response:	ACK (success) or NACK (error)	
	Default value:	3x3 Identity matrix	
30	Get the current acce	elerometer alignment matrix.	
	Packet data:	Accelerometer alignment matrix	
	Return format:	32-bit integer encoded float 3 x 3 matrix	
	Macro name:	GET_ACC_ALIG	
31	Set the current rang	e of the accelerometer.	
	Packet data: Accelerometer range identifier		

	Format:	32-bit integer		
		Range (g: 1 gravity)	Identifier	
		2g	2	
		4g	4	
		8g	8	
		16g	16	
	Macro name:	SET_ACC_RANGE		
	Response:	ACK (success) or NACK (error)		
	Default value:	2g		
32	Get current acceleror	ometer range.		
	Packet data:	Accelerometer range indicator		
	Return format:	32-bit integer		
	Macro name:	GET_ACC_RANGE		

Magnetometer Settings Command

33	Set the current range of the magnetometer.Packet data:Magnetometer range identifierFormat:32-bit integerRangeIdentifier130 uT130190 uT190				
	Packet data:	Magnetometer range identifier			
	Format:	32-bit integer			
		Range	Identifier		
		130 uT	130		
		190 uT	190		
		250 uT	250		
		400 uT	400		
		470 uT	470		
		560 uT	560		
		810 uT	810		
	Macro name:	SET_MAG_RANGE			
	Response:	ACK (success) or NACK (error	r)		
	Default value:	250 uT			
34	Get current magnetor	neter range.			
	Packet data:	Magnetometer range indicat	tor (same as above)		
	Return format:	32-bit integer			
	Macro name:	GET_MAG_RANGE			
35	Set the current hard i	ron offset vector.			

	Packet data:	Hard iron offset values in uT
	Format:	32-bit integer encoded 3-element float vector
	Macro name:	SET_HARD_IRON_OFFSET
	Response:	ACK (success) or NACK (error)
	Default value:	(0.0, 0.0, 0.0)
36	Get current hard iro	n offset vector.
	Packet data:	Hard iron offset values in uT
	Return format:	32-bit integer encoded 3-element float vector
	Macro name:	GET_HARD_IRON_OFFSET
37	Set the current soft	iron matrix.
	Packet data:	Soft iron matrix values in uT
	Format:	32-bit integer encoded 9-element (3x3) float matrix
	Macro name:	SET_SOFT_IRON_MATRIX
	Response:	ACK (success) or NACK (error)
	Default value:	(1, 0, 0)
		(0, 1, 0)
		(0, 0, 1)
38	Get the current soft	iron matrix.
	Packet data:	Soft iron matrix values in uT
	Return format:	32-bit integer encoded 9-element (3x3) float matrix
	Macro name:	GET_SOFT_IRON_MATRIX
39	Set the current earth	magnetic field strength estimate.
	Packet data:	Field estimate value in uT
	Format:	32-bit integer encoded float
	Macro name:	SET_FIELD_ESTIMATE
	Response:	ACK (success) or NACK (error)
	Default value:	50 uT
40	Get the current earth	n magnetic field strength estimate.
	Packet data:	Field estimate value in uT
	Return format:	32-bit integer encoded float
	Macro name:	GET_FIELD_ESTIMATE

41	Setthe sensor filter r	node.			
	Packet data:	Mode identifier			
	Format:	32-bit integer			
		Mode	Va	alue	
		Gyroscope only	05	x0000000	
		Accelerometer +	05	x00000001	
		gyroscope			
		Accelerometer+	05	x00000002	
		gyroscope+			
		magnetometer			
		Accelerometer +	02	x00000003	
		Magnetometer (Euler			
		angle based filtering)			
		Accelerometer +	05	x00000004	
		Gyroscope (Euler			
		angle-based filtering)			
	Macro name:	SET_FILTER_MODE			
	Response:	ACK (success) or NACK (e	erroi	r)	
	Default value:	Accelerometer + gyroscope	•		
42	Get the currently sel	lected filter mode.			
	Packet data:	Filter mode identifier			
	Return format:	32-bit integer			-
		Mode		Value	
		Gyroscope only		0x0000000	
		Accelerometer	+	0x00000001	
		gyroscope			
		Accelerometer	+	0x00000002	
		gyroscope	+		
		magnetometer			
	Macro name:	GET_FILTER_MODE			
42					
43	Backet deta:	Magnetometer correction at	ron	ath preset identifier	
	racket data:	22 bit integer	ueng	gui preser identifier	
	r ormat:	52-bit integer			

		Preset	Value	
		Dynamic	0x00000000	
		Strong	0x0000001	
		Medium	0x0000002	
		Weak	0x0000003	
	Macro name:	SET_FILTER_PRESET		'
	Response:	ACK (success) or NACK (e	error)	
	Default value:	Dynamic		
44	Get the currently ma	gnetometer correction strengt	th preset	
	Packet data:	Magnetometer correction	n strength preset identifier	
	Return format:	32-bit integer		
		Correction strength	Value	
		Dynamic	0x0000000	
		Strong	0x00000001	
		Medium	0x0000002	
		Weak	0x0000003	
	Macro name:	GET_FILTER_PRESET	ר	

CAN Bus Settings Command

45	SetCAN stream format.T	his command has been depr	recated.
46	Set the CAN baudrate		
	Packet data:	CAN communication baudr	rate
	Format:	32-bit integer	
		Correction strength	Value
		10Kbit/s	0x0000000
		20Kbit/s	0x0000008
		50Kbit/s	0x0000010
		125Kbit/s	0x0000018
		250Kbit/s	0x0000020
		500Kbit/s	0x0000028
		800Kbit/s	0x0000030
		1Mbit/s	0x0000038
	Macro name:	SET_CAN_BAUDRATE	·
	Response:	ACK (success) or NACK (e	error)

Default value:	1Mbit/s	
----------------	---------	--

Additional Settings

47	Get the currently firmw	are version.
48	Set gyroscope alignmen	it bias
	Packet data:	Gyroscope alignment bias
	Format:	Float 3-vector
	Macro name:	SET_GYR_ALIGN_BIAS
	Response:	ACK (success) or NACK (error)
	Default value:	1Mbit/s
49	Get gyroscope alignmen	nt bias
	Packet data:	Gyroscope alignment bias
	Return format:	Float 3-vector
	Macro name:	GET_GYR_ALIGN_BIAS
50	Set gyroscope alignmen	it matrix
	Packet data:	Gyroscope alignment matrix
	Format:	Float 3x3 matrix
	Macro name:	SET_GYR_ALIGN_MATRIX
	Response:	ACK (success) or NACK (error)
	Default value:	(1, 0, 0)
		(0, 1, 0)
		(0, 0, 1)
51	Get gyroscope alignmen	nt matrix
	Packet data:	Gyroscope alignment matrix
	Return format:	Float 3x3 matrix
	Macro name:	GET_GYR_ALIGN_MATRIX
52	Reserved	
53	Reserved	
54	Reserved	
55	Reserved	
56	Reserved	
57	Reserved	
58	Reserved	
59	Reserved	
60	Set raw data low-pass	
	Packet data:	Low pass strength (1.0 is weakest / disabled)

	Format:	Float			
	Macro name:	SET_RAW_DATA_LP			
	Response:	ACK (success) or NACK (err	or)		
	Default value:	1.0			
61	Get raw data low-pass				
	Packet data:	Low pass strength (1.0 is wea	kest / disa	bled)	
	Return format:	Float			
	Macro name:	GET_RAW_DATA_LP			
62	Set CANOpen mapping				
	Packet data:	CANOpen mapping			
	Format:	The mapping data consists	of 8 integ	ger words. Each of	
		these words represents the as	signment	of half a CANOpen	
		transmission object / messag	ge (TPDO) to specific sensor	
		data. In more detail:			
		Message name		Position in	
				configuration	
				mapping	
				message	
		TPDO 1 (msg. 0x180, bytes	0-3)	0	
		TPDO 1 (msg. 0x180, bytes	5-7)	1	
		TPDO 2 (msg. 0x280, bytes	0-3)	2	
		TPDO 2 (msg. 0x280, bytes	5-7)	3	
		TPDO 3 (msg. 0x380, bytes	0-3)	4	
		TPDO 3 (msg. 0x380, bytes	5-7)	5	
		TPDO 4 (msg. 0x480, bytes	0-3)	6	
		TPDO 4 (msg. 0x480, bytes	5-7)	7	
		Assignments work according	to the foll	owing table:	
		Sensor data	Assignm	ent index	
		Angular velocity X	0		
		Angular velocity Y	1		
		Angular velocity Z	2		
		Euler angle X	3		
		Euler angle Y	4		
		Euler angle Z	5		

		Lin. acceleration X	6	
		Lin. acceleration Y	7	
		Lin. acceleration Z	8	
		Magnetometer X	9	
		Magnetometer Y	10	
		Magnetometer Z	11	
		Quaternion W	12	
		Quaternion X	13	
		Quaternion Y	14	
		Quaternion Z	15	
		Accelerometer X	16	
		Accelerometer Y	17	
		Accelerometer Z	18	
	Macro name:	SET_CAN_MAPPING		
	Response:	ACK (success) or NACK (err	or)	
	Default value:	0x0000007 0000006 00000	005 00000004	
		00000003 0000002 0000000	1 0000000	
63	Get CANOpen mapping			
	Packet data:	CANOpen mapping		
	Return format:	See command 62		
	Macro name:	GET_CAN_MAPPING		
64	Set CANOpen heartbeat	frequency		
	Packet data:	CANOpen heartbeat frequenc	У	
	Format:	Integer. In detail:		
		Heartbeat frequency	Identifier	
		5Hz	0x0000000	
		1Hz	0x0000001	
		0.5Hz	0x0000002	
		0.2Hz	0x0000003	
		0.1Hz	0x0000004	
	Macro name:	SET_CAN_HEARTBEAT		
	Response:	ACK (success) or NACK (err	or)	
	Default value:	0x0000000		
65	Get CAN heartbeat			
	Packet data:	CANOpen heartbeat frequence	у	

	Return format:	See command 64
	Macro name:	GET_CAN_HEARTBEAT
66	Reset sensor data times	tamp to 0
	Packet data:	none
	Format:	none
	Macro name:	RESET_TIMESTAMP
	Response:	ACK (success) or NACK (error)
	Default value:	none

IX. OpenMAT

Overview

Introduction

OpenMAT is the software package delivered with a LPMS device. The package contains the basic hardware device drivers for the sensors, a C++ library to easily access the functionality of the IMUs and also a network interface (OpenMAT network) that allows applications to communicate with each other to exchange sensor information. OpenMAT consists of the following components:

- LpSensor library: OpenMAT applications above are based on the LpSensor library. This library
 contains classes that allow easy access to the functionality of the LPMS devices. Contained
 classes and their most important methods as well as usage examples are described further on in
 this chapter.
- LpmsControl application: This application is used to control the basic LPMS device functionality. It can be used to connect to multiple sensors, adjust parameters and record sample data. Data is graphically represented as line graphs or as a 3D cube that changes orientation according to the data received from a sensor.

PLEASE NOTE: LpmsControl is also used to do updates of the LPMS firmware. We will explain further details below. IMPORTANT: We recommend the users to use the high performance mode of a PC in order to guarantee the LpmsControl application performance.

 OpenMAT server: The OpenMAT server manages the communication of applications on the OpenMAT network. Please contact LP-Research for examples of how to use the OpenMAT network.

OpenMAT is available as binary release and as source code release. If you would like to use the included applications as is, please use the binary release. This is suggested as the easiest way to start as it allows you to test the functionality of your sensor.

We also offer a source code release that allows you to re-compile or modify the code. In case you would like to include OpenMAT with your own applications it is recommended to take a look at the source code release.

Application Installation

Please follow the steps below to install the OpenMAT binary release. The binary release also includes the OpenMAT API pre-compiled for Windows 32-bit.

- When you purchase one of our sensors the latest version of the library at the time is also contained on the included CD. Please be aware that development on OpenMAT is ongoing and therefore the version on the CD might become outdated. Therefore please check on our website for updates.
- 2. Start OpenMAT-x.x.x-Setup.exe (x.x.x being the latest version number).
- 3. Follow the displayed installation instructions.
- 4. Switch the LPMS device on.
- 5. Start LpmsControl from the OpenMAT entry in the start menu.
- 6. Check if your device is listed in the 'Discovered devices' list.
- 7. Mark the device you would like to connect to by clicking on it in the list and push the connect button.
- 8. After a few seconds you should be seeing data being streamed from your sensor.

LpmsControl Software Operation

Overview

The LpmsControl application allows users to control various aspects of the LPMS-CANAL sensor that can be used to:

- List all LPMS devices that are discovered in the system.
- Adjust the sensor parameters (sensor range etc.).
- Reset orientation and reference vectors.
- Initiate gyroscope and magnetometer calibration.
- Adjust the accelerometer misalignment matrix.
- Display the acquired data in real-time either as line graphs or a 3D cube.
- Record data from the sensors to a CSV data file.
- Upload new firmware and in-application-programming software to the sensor.

As LpmsControl is part of the open-source OpenMAT package its source code is available and can be modified by the user. Most parts of the code are documented, so that a user can also use parts of LpmsControl to write their own sensor control code.

GUI Elements

Application window

<u>Menu Bar</u>

introdued in section "Calibration Methods")

Calibrate magnetometer – Starts the magnetic calibration (users should follow the insturctions introdued in section "*Calibration Methods*"). IMPORTANT: Euler angle transmission must be turned on for the magnetometer calibration to succeed.

Calibrate acc. misalignment– Starts the accelerometer calibration. (users should follow the insturctions introdued in section "*Calibration Methods*").

Calibrate gyr. misalignment- reserved by LP-RESEARCH.

Save parameters to sensor – Saves the current parameter settings and calibration results into the sensor flash.

Save parameters to file – Saves the current parameter settings and calibration results into a .txt file in your local host system.

Load parametersfromfile – Loads the previouslysaved calibration results in a local txt file into the sensor flash.

Reset heading (selected)– Sets themagnetometer and accelerometer reference of the LP-Filter of the currenly selected sensor in the "Connected devices" list to the current measured magnetic

and acceleration vector. This function should be used after calibrating the magnetometer.

Reset heading (all)– Sets themagnetometer and accelerometer reference of the LP-Filter of all the sensors in the "Connected devices" list to the current measured magnetic and acceleration vector. This function should be used after calibrating the magnetometer.

Reset offset (selected) - Resets the current orientation of the selected sensor in the "Connected devices" list as zero-orientation. Further rotations will be the difference rotation between the zero-orientation and the currently measured orientation.

Reset offset (all) - Resets the current orientation of all the sensors in the "Connected devices" list as zero-orientation. Further rotations will be the difference rotation between the zero-orientation and the currently measured orientation.

Reset to factory settings – Recovers the settings of all the connected sensors to the factory default values.

🚯 OpenM	AT LPMS Control	denser in							
Connect	Measurement	Calibration	Оре	enMAT	View	Expert			
Sensor Control				Conne	ect to O	penMAT s	erver		
Discove	ered devices			Versio	n info			On an MAT m	~ ~ ~
			_				T	-OpenwiAI m	ent

Connect to OpenMAT server - This is used for human model simulator. The human model simulator allows the construction of 3D models with links and joints that can be associated with orientation sensors on the OpenMAT network. Momentarily this application is still in an experimental state. PLEASE NOTE: This function is reserved by LP-RESEARCH. **Version info** – Version information of the LpmsControl software.

Graph window- Switches the middle graph window to show the raw sensor data. **Orientation window** – Switches the middle graph window to show the orientation data.

Pressure window - Switches the middle graph window to show the pressure data.

3D visualization - Switches the middle graph window to 3D cube view.

Magnetic field map – Switches the middle graph window to magnetic field map view.

3D view mode 1 - Switches the middle graph window to 1 window for one sensor 3D visualization.
3D view mode 2 - Switches the middle graph window to 2 windows for 2 sensors 3D visualization.
3D view mode 4 - Switches the middle graph window to 4 windows for 4 sensors 3D visualization.

🔂 LPMS Control			
Connect Measurement Calibration OpenM	1AT <u>V</u> iew <u>E</u> x	pert	
		Upload firmware Upload IAP	
		Start self test	
Connected devices	-		Expert menu

Upload firmware - Starts firmware upload. IMPORTANT: Only upload authorized firmware that you received from LP-RESEARCH. Uploading a wrong firmware file can make the sensor in-operable.

Upload IAP- Uploads a new in-application programmer.PLAESENOTE: This is reserved by LP-RESEARCH and should not be used by user.

Start self test- Starts a self test for checking the basic functionalities of the sensor.

Device Discovery

Discovery can be re-started by clicking on the "Scan devices" button. If the LPMS-CANAL device cannot be discovered by the initial discovering, please try to push the "Scan devices" button and search again.

IMPORTANT: After you plug-in the LPMS-CANAL to your PC, it takes a few seconds until Windows will correctly recognize the device. During that period the device might not be discoverable by the LpmsControl application.

Connecting and Disconnecting a Device

To connect a LPMS-CANAL sensor click on the corresponding item in the "Preferred devices" list and click the "Connect" button. The sensor should now become listed in the "Connected devices" list. While establishing the connection, the 'Connection status' indicator shows 'connecting...'. Once a connection has been successfully established, the connection status will change to 'connected'. The sensor will start measuring automatically after connecting. Should the connection procedure fail for some reason, 'failed' will be displayed. If a successful connection is interrupted the connection status will change to 'connection interrupted'.

Sensor Parameter Adjustment

Sensor parameters can be adjusted using the item in the connected sensors list that corresponds to the target device. Using the drop down lists the following parameters can be set:

• **IMU ID**: The device OpenMAT ID.

- **Sampling rate**: System sampling frequency
- GYR range: Gyroscope measurement range
- ACC range: Accelerometer measurement range
- MAG range: Magnetometer measurement range
- Filter mode: The filter mode setting (see also the previous section "Filter Settings")
- Mag. correction: The magnetic correction setting (see also the previous section "*Filter Settings*")
- Linear acc cor.: The linear acceleration correction setting (see also the previous section *"Filter Settings"*)
- **Rotational acc cor**.: The linear rotational correction setting (see also the previous section *"Filter Settings"*)
- **Gyr. threshold**: To enable or disable the gyroscope threshold function (see also the previous section *"Filter Settings"*)
- **Gyr. autocalibration**: To enable or disable the gyroscope auto calibration function (see also the previous section "*Filter Settings*")
- **Low-pass filter**: To set up the coefficient of the low pass filter (see also the previous section *"Filter Settings"*)
- CAN baudrate: Selects the baudrate used for CAN bus communication.
- **CANopen heartbeat**: Selects the frequency with which the CANOpen heartbeat is transmitted from the sensor.
- TPDO 0 4 data setting: Selects the data to be transmitted via the CANOpen TPDOs. Angular velocity, orientation in Euler angles, orientation quaternion, linear acceleration and raw accelerometer and magnetometer data can be sent.
- Selected data: check the data types you want to acquire.

Parameter adjustments are normally only persistent until the sensor is switched off. You can permanently save the newly adjusted parameters to the LPMS flash memory by selecting "Save parameters to sensor" in the "Calibration" menu of LpmsControl.

Reset of Orientation and Reference Vectors

The offset of the orientation measured by the sensor can be set to the currently acquired orientation by clicking on the "Reset offset" functions of LpmsControl. The newly reported orientation data will be the orientation difference between this zero-orientation and the un-adjusted (raw) orientation measurement.

The accelerometer and magnetometer reference vector is reset by clicking on the "Reset heading" function of LpmsControl. Before resetting the heading reference, PLEASSE DO complete the

magnetic calibration. While initiating the heading reference reset, point the y axis of the sensor roughly in north direction and hold the x-y plane of the sensor parallel to the ground.

IMPORTANT: The adjustment of the heading reference vectors is very important for accurate orientation measurements. The sensor will be delivered to you in a pre-calibrated state. However, as the direction of the earth magnetic field slightly varies at different place, it might be necessary to reset the reference. To save the new heading reference after a successful reset, select "Save parameters to sensor" function of LpmsControl. Normally the setting of the heading reference vectors when done accurately only needs to be done once.

How to Upload New Firmware

IMPORTANT: Please follow the following steps carefully when you are updating the sensor firmware. Any mistake operation might result in a failure of firmware update and disable sensor functionality.

- 1. Start your current LpmsControl software.
- 2. Connect to the sensor you would like to update.
- 3. Choose the "Save parameters to file" function from the calibration menu of LpmsControl to save the current sensor calibration results into a .txt file in your local host system.
- 4. Select "Upload firmware" function in the "Expert" menu.
- 5. Click OK and select the new firmware file. Be careful that you select the right file which should be named as LpmsCANALFirmwareX.X.X.bin by LP-RESEARCH.
- 6. Wait for the upload process to finish. It should take around 30 seconds. At around 15s the green LED on the sensor should begin to blink rapidly.
- 7. Disconnect from the sensor and exit LpmsControl.
- 8. Now install the new LpmsControl application. The previous LpmsControl application does not need to be un-installed.
- 9. Start LpmsControl and connect to your sensor.
- 10. Choose the "Load parameters fromfile" function from the calibration menu of LpmsControl to recover the previous sensor calibration results.
- 11. Choose the "Save parameters tosensor" function from the calibration menu of LpmsControl to save the previous sensor calibration results into sensor flash.
- 12. The whole procedure is done. Make sure everything works as expected. If there is anything unexpected, please contact LP-RESEARCH by Email: info@lp-research.com.

The LpSensor Library

Building Your Application

The LpSensor library contains classes that allow a user to integrate LPMS devices into their own

applications. The library is a Windows 32-bit C++ library for MS Visual C++ (express) 2010. Should you require a binary for the library for other operating systems or 64-bit applications, please contact LP-RESEARCH.Compiling applications that use the LpSensor library requires the following components:

Header files (usually in C:/OpenMAT/include)

LpmsSensorManagerI.h	Contains the interface for the LpmsSensorManager class.
LpmsSensorI.h	Contains the interface for the LpmsSensor class
ImuData.h	Structure for containing output data from a LPMS device
LpmsDefinitions.h	Macro definitions for accessing LPMS
DeviceListItem.h	Contains the class definition for an element of a LPMS device list

LIB files (usually in C:/OpenMAT/lib/x86)

LpSensorD.lib	LpSensor library (Debug version)
LpSensor.lib	LpSensor library (Release version)

DLL files (usually in C:/OpenMAT/lib/x86)

LpSensorD.dll	LpSensor library (Debug version)
LpSensor.dll	LpSensor library (Release version)

PCANBasic.dll	PeakCAN library DLL for CAN interface communication.	This file is
only needed, if you use a Pea	kCAN interface to communicate with LPMS-CU.	
ftd2xx.dll	The FTDI library to communicate with an LPMS over USB	•

To compile the application please do the following:

- 1. Include LpmsSensorManagerI.h before you access any LpSensor classes.
- 2. Add LpSensor.lib (or LpSensorD.lib if you are compiling in debug mode) to the ist of linked libraries for your application.
- 3. Make sure that you set a path to LpSensor.dll / LpSensorD.dll, PCANBasic.dll and ftd2xx.dll reside so that the runtime file of your application can access them.

Important Classes

SensorManager

The sensor manager class wraps a number of LpmsSensor instances into one class, handles device discovery and device polling. For user applications the following methods are most commonly used. Please refer to the interface file SensorManagerI.h for more information.

IMPORTANT: An instance of LpmsSensor is returned by the static function **LpmsSensorManagerFactory**(). See the example listing in the next section for more information how to initialize a LpmsSensorManager object.

Method name	SensorManager (void)	
Parameters	none	
Returns	SensorManager object	
Description	Constructor of a SensorManager object.	

Method name	LpSensor	<pre>* addSensor(int mode,</pre>	string deviceId)	
Parameters	mode	mode The device type to be connected. The following device		
		types are available:		
		Macro	Device type	
		DEVICE_LPMS_B	LPMS-B	
		DEVICE_LPMS_C	LPMS-CU (CAN mode)	
		DEVICE_LPMS_U	LPMS-CU (USB mode)	
	deviceId	Device ID of the LPMS device.	The ID is equal to the	
		OpenMAT ID (initially set to 1	, user definable).	
Returns	Pointer to L	Pointer to LpSensor object.		
Description	Adds a sensor device to the list of devices adminstered by the			
	SensorManager object.			
Method name	void removeSensor(LpSensor *sensor)			
Parameters	sensor Pointer to LpSensor object that is to be removed from the			
	list of sensors. The call to removeSensor frees the memory			
	associated with the LpSensor object.			
Returns	none			
Description	Removes a device from the list of currently administered sensors.			

Method name	<pre>void listDevices(std::vector<devicelistitem> *v)</devicelistitem></pre>		
Parameters	*v Pointer to a vector containing DeviceListItem objects with		
	information about LPMS devices that have been discovered		
	by the method.		
Returns	None		
Description	Lists all connected LPMS devices. The device discovery runs in a		

seperate thread.For Bluetooth devices should take several seconds to be	
added to the devicelist. CAN bus and USB devices should be added after	
around 1s.	

LpmsSensor

This is a class to access the specific functions and parameters of an LPMS. The most commonly used methods are listed below. Please refer to the interface file LpmSensorI.h for more information.

Method name	void run (void)
Parameters	None
Returns	None
Description	Starts the data acquisition procedure.

Method name	void pause (void)
Parameters	None
Returns	None
Description	Pauses the data acquisition procedure.

Method name	int getSensorStatus(void)		
Parameters	None		
Returns	Sensor state identifier:		
	Масто	Sensor state	
	SENSOR_STATUS_PAUSED	Sensor is currently paused.	
	SENSOR_STATUS_RUNNING	Sensor is currently acquiring	
		data.	
	SENSOR_STATUS_CALIBRATING	Sensor is currently calibrating.	
	SENSOR_STATUS_ERROR	Sensor has detected an error.	
	SENSOR_STATUS_UPLOADING	Sensor is currently receiving	
		new firmware data.	
Description	Retrieves the current sensor status.		

Method name	int getConnectionStatus(void)
Parameters	None

Returns	Connection status identifier:		
	Macro	Sensor state	
	SENSOR_CONNECTION_CONNECTED	Sensor is connected.	
	SENSOR_CONNECTION_CONNECTING	Connection is currently	
		being established.	
	SENSOR_CONNECTION_FAILED	Attempt to connect has	
		failed.	
	SENSOR_CONNECTION_INTERRUPTED	Connection has been	
		interrupted.	
Description	Retrieves the current connection status.		

Method name	void startResetReference(void)	
Parameters	None	
Returns	None	
Description	Resets the current accelerometer and magnetometer reference. Please see	
	the 'Operation' chapter for details on the reference vector adjustment	
	procedure.	

Method name	void startCalibrateGyro(void)	
Parameters	None	
Returns	None	
Description	Starts the calibration of the sensor gyroscope.	

Method name	void startCalibrateMag(void)	
Parameters	None	
Returns	None	
Description	Starts the calibration of the LPMS magnetometer.	

Method name	CalibrationData* getConfigurationData(void)	
Parameters	None	
Returns	Pointer to CalibrationData object.	
Description	Retrieves the CalibrationData structure containing	
	the configuration parameters of the connected LPMS.	

Method name bool setConfigurationPrm(int parameterIndex, int	
--	--

	parameter)		
Parameters	parameterIndex	The parame	eter to be adjusted.
	parameter	The new pa	arameter value.
	Supported parameterIndex	identifiers:	
	Macro		Description
	PRM_OPENMAT_ID		Sets the current OpenMAT ID.
	PRM_FILTER_MODE		Sets the current filter mode.
	PRM_PARAMETER_SET		Changes the current filter
			preset.
	PRM_GYR_THRESHOLD	ENABLE	Enables / diables the gyroscope
			threshold.
	PRM_MAG_RANGE		Modifies the current
			magnetometer sensor range.
	PRM_ACC_RANGE		Modifies the current
			accelerometer sensor range.
	PRM_GYR_RANGE		Modifies the current gyroscope
			range.
	Supported parameter identi PRM_OPENMAT_ID Integer ID number PRM_FILTER_MODE	fiers for each	n parameter index: L and 255.
	Macro	Γ	Description
	FM_GYRO_ONLY	C	Only gyroscope
	FM_GYRO_ACC	C	Gyroscope + accelerometer
	FM_GYRO_ACC_MAG_N	s c	Syroscope + accelerometer +
		n	nagnetometer
	PRM_PARAMETER_SET		
	Macro	Γ	Description
	LPMS_FILTER_PRM_S	ET_1 N	Augnetometer correction
			dynamic" setting.
	LPMS_FILTER_PRM_S	ET_2 S	trong

	LPMS_FILTER_PRM_SET_3	Medium
	LPMS_FILTER_PRM_SET_4	Weak
	PRM_GYR_THRESHOLD_ENABLE	
	Macro	Description
	IMU_GYR_THRESH_DISABLE	Enable gyr. threshold
	IMU_GYR_THRESH_ENABLE	Disable gyr. thershold
	PRM_GYR_RANGE	
	Macro	Description
	GYR_RANGE_250DPS	Gyr. Range = 250 deg./s
	GYR_RANGE_500DPS	Gyr. Range = 500 deg./s
	GYR_RANGE_2000DPS	Gyr. Range = 2000 deg./s
	PRM_ACC_RANGE	
	Macro	Description
	ACC_RANGE_2G	Acc. range = 2g
	ACC_RANGE_4G	Acc. range = 4g
	ACC_RANGE_8G	Acc. range = 8g
	ACC_RANGE_16G	Acc. range = 16g
	PRM_MAG_RANGE	
	Масто	Description
	MAG_RANGE_130UT	Mag. range = 130uT
	MAG_RANGE_190UT	Mag. range = 190uT
	MAG_RANGE_250UT	Mag. range = 250uT
	MAG_RANGE_400UT	Mag. range = 400uT
	MAG_RANGE_470UT	Mag. range = 470uT
	MAG_RANGE_560UT	Mag. range = 560uT
	MAG_RANGE_810UT	Mag. range = 810uT
Returns	None	
Description	Sets a configuration parameter.	
	•	

Method name	<pre>bool getConfigurationPrm(int parameterIndex, int</pre>
	*parameter)

Parameters	parameterIndex	The parameter to be adjusted.
	parameter	Pointer to the retrieved parameter value.
	See setConfigurationPrm n	nethod for an explanation of supported paramer
	indices and parameters.	
Returns	None	
Description	Retrieves a configuration p	arameter.

Method name	void resetOrientation(void)	
Parameters	None	
Returns	None	
Description	Resets the orientation offset of the sensor.	

Method name	void saveCalibrationData(void)
Parameters	None
Returns	None
Description	Starts saving the current parameter settings to the sensor flash memory.

Method name	<pre>virtual void getCalibratedSensorData(float g[3],</pre>	
	float a	[3], float b[3])
Parameters	g[02] Calibrated gyroscope data (x, y, z-axis).	
	a[02]	Calibrated accelerometer data (x, y, z-axis).
	b[02]	Calibrated magnetometer data (x, y, z-axis).
Returns	None	
Description	Retrieves calibrated sensor data (gyroscope, accelerometer,	
	magnetometer).	

Method name	virtual void getQuaternion(float q[4])
Parameters	q[03] Orientation quaternion (qw, qx, qy, qz)
Returns	None
Description	Retrieves the 3d orientation quaternion.

Method name	<pre>virtual void getEulerAngle(float r[3])</pre>
Parameters	r[02] Euler angle vector (around x, y, z-axis)
Returns	None
Description	Retrieves the currently measured 3d Euler angles.

Method name	<pre>virtual void getRotationMatrix(float M[3][3])</pre>	
Parameters	M[02][02] Rotations matrix (row i=02, column j=02)	
Returns	None	
Description	Retrievs the current rotation matrix.	

Example Code

Connecting to the an LPMS-CU device

1	#include "LpmsSensorI.h"
2	<pre>#include "LpmsSensorManagerI.h"</pre>
3	
4	main()
5	£
6	// Get a LpmsSensorManager instance
7	<pre>LpmsSensorManagerI* manager = SensorManagerFactory();</pre>
8	
9	// Connect to LPMS-CU sensor with address A123456
10	<pre>LpmsSensorI* lpms = manager->addSensor(DEVICE_LPMS_U, "A123456");</pre>
11	
12	while(1) {
13	float q[4];
14	
15	// Read quaternion data
16	lpms->getQuaternion(q);
17	
18	// Do something with the data
19	//
20	}
21	
22	// After doing the work, remove the initialized sensor
23	<pre>sm->removeSensor(lpms);</pre>
24	
25	// Delete LpmsSensorManager object
26	delete manager;
27	}

Setting and	Retrieval	of Sensor	Parameters

1	/* Setting a sensor parameter. */
2	<pre>lpmsDevice->setParameter(PRM_ACC_RANGE, LPMS_ACC_RANGE_8G);</pre>
з	
4	/* Retrieving a sensor parameter. */
5	int p;
6	<pre>lpmsDevice->setParameter(PRM_ACC_RANGE, &p);</pre>

Sensor and Connection Status Inquiry

1	/* Retrieves current sensor status */
2	<pre>int status = getSensorStatus();</pre>
3	
4	switch (status) {
5	case SENSOR_STATUS_RUNNING:
6	<pre>std::cout << "Sensor is running." <<std::endl;< pre=""></std::endl;<></pre>
7	break;
8	
9	case SENSOR_STATUS_PAUSED:
10	<pre>std::cout << "Sensor is paused." <<std::endl;< pre=""></std::endl;<></pre>
11	break;
12	}
13	
14	<pre>status = lpmsDevice->getConnectionStatus();</pre>
15	
16	switch (status) {
17	case SENSOR_CONNECTION_CONNECTING:
18	<pre>std::cout << "Sensor is currently connecting." <<std::endl;< pre=""></std::endl;<></pre>
19	break;
20	
21	case SENSOR_CONNECTION_CONNECTED:
22	<pre>std::cout << "Sensor is connected." <<std::endl;< pre=""></std::endl;<></pre>
23	break;
24	}

In case you have any further questions regarding the programming interface please contact LP-RESEARCH directly.

X. MECHANICAL INFORMATION

Please Read Carefully:

Information in this document is provided solely in connection with LP-RESEARCH products. LP-RESEARCH reserves the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All LP-RESEARCH products are sold pursuant to LP-RESEARCH's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the LP-RESEARCH products and services described herein, and LP-RESEARCH assumes no liability whatsoever relating to the choice, selection or use of the LP-RESEARCH products and services described herein.

UNLESS OTHERWISE SET FORTH IN LP-RESEARCH'S TERMS AND CONDITIONS OF SALE LP-RESEARCH DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF LP-RESEARCH PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LP-RESEARCH PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. LP-RESEARCH PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

© 2014LP-RESEARCH - All rights reserved

Japan – China – Germany – Korea – Egypt www.lp-research.com