
LPMS User Manual

ver. 2.6

This manual applies to the following devices:

LP-Research Inc.

http://www.lp-research.com

LPMS-B2 Series

LPMS-CURS2 Series

LPMS-U2 Series

LPMS-AL2 Series

LPMS-ME1 Series

LPMS User Manual ver. 2.6

2

Revision History

Date Revision Changes

2012-05-01 1.0
- Initial release.

2012-09-01 1.0.11

- Unified manual split into separate versions for LPMS-B

and LPMS-CU.

2012-09-17 1.0.12

- Updates to reflect the latest changes in the firmware

command set.

- OpenMAT library section contains more details on how

to use the binary LpSensor library.

- Section on how to compile LpmsControl was removed.

2014-01-13 1.2.7

- Correction of some bugs on commands list.

- Add introduction of advanced gyroscope calibration.

2014-07-27 1.3.0

- Sensor orientation data explanation

- Offset reset mode explanation

- Improved magnetic field calibration explanation

- 16-bit and 32-bit transmission modes documentation

2014-09-03 1.3.3

- Re-unified manual for all LPMS models

- Updated command list

- Added chapter about orientation calculation details and

orientation offset methods

- Added chapter about multi-sensor synchronization

- Updated LpmsControl explanation, new screenshots

- Updated software revision list

2015-02-10 1.3.4

- Correction on Euler angles rotation sequence to ZYX

type

- Correction on LRC check-sum calculation in section

packet format

2015-05-27 1.3.4 - LP-CAN: CAN message ID calculation corrected

LPMS User Manual ver. 2.6

3

- LRC value calculation corrected

- Added BT module information

2019-08-12 2.0

- Removed hardware specific parts. These are now

covered in the quick start manuals

- Corrected scaling factors for all non-floating-point data

transmission modes

- Corrected error in description of reset modes

- Moved to-be-deprecated LpSensor detail description to

appendix

- Added list with APIs for direct sensor programming.

OpenZen is to replace LpSensor

2019-09-06 2.1
Fixed another issue in reset mode section

2019-12-06 2.2

- Fixed figure numbering

- Removed wrong unit information in communication

protocol description

2019-12-19 2.3 - Fixed scaling factor for 16-bit data

2020-02-09 2.4

- Acceleration is transmitted in g in all places

- Angular velocity in rad/s

- Updated to latest OpenZen repository, binaries,

documentation

2020-03-09 2.5

- Edited the layout of this document

- Added sensor series information in the introduction

section.

- Added sensor series photos on the front page

- Changed the document name from LPMS Operator’s

Manual to LPMS User Manual

2020-03-30 2.6
- Revised some typos

- Added more function explanations to API section

LPMS User Manual ver. 2.6

4

Table of Contents

I. Introduction ... 7

II. Overview .. 8

Measurement Output .. 8

Technical Background ... 8

Communication Methods .. 9

Calibration ... 9

Size and Run-times .. 10

Application Areas .. 10

III. Operation .. 11

Device Specifications ... 11

Host Device Communication ... 11

Bluetooth 2 .. 12

USB ... 12

CAN Bus .. 12

RS-232, TTL-level serial ... 13

Orientation Data .. 13

Sensor Orientation Alignment Modes ... 15

Heading reset .. 15

Alignment reset ... 15

Object reset ... 16

Data Acquisition .. 17

Raw Sensor Data .. 17

Orientation Data .. 17

Filter Settings .. 17

Filter Modes ... 17

Magnetometer Correction Setting ... 18

Acceleration Compensation Setting .. 19

Gyroscope Threshold .. 19

Gyroscope Auto-calibration Function .. 19

LPMS User Manual ver. 2.6

5

Calibration Methods .. 20

Gyroscope Bias Calibration and Threshold .. 20

Magnetometer Calibration ... 20

IV. Communication Protocol ... 22

LP-BUS Protocol ... 22

GET Commands .. 23

SET Commands .. 23

Packet Format ... 23

Data Format in a Packet Data Field .. 24

Sensor Measurement Data in Streaming Mode.. 24

Example Communication .. 26

RequestSensor Configuration ... 26

Request Gyroscope Range ... 27

Set Accelerometer Range ... 28

Read Sensor Data ... 29

ASCII Format Output .. 30

LP-CAN Protocol ... 30

CANopen and Sequential CAN Protocol .. 32

V. Data Acquisition Software and API ... 39

LPMS-Control Software .. 39

GUI Elements .. 39

Scanning, Discovering and Saving Devices ... 44

Connecting and Disconnecting a Device .. 45

Recording and Playing Back Data .. 46

Switching View Modes .. 46

Uploading New Firmware .. 48

APIs ... 48

VI. APPENDIX .. 51

Appendix A – LpSensor Library Documentation ... 51

Important Classes ... 52

Example Code (C++) .. 59

Appendix B – Common Conversion Routines .. 61

Conversion Quaternion to Matrix .. 61

LPMS User Manual ver. 2.6

6

Conversion Quaternion to Euler Angles (ZYX rotation sequence) 62

Appendix C – LP-BUS Protocol Command List ... 63

Acknowledged and Not-acknowledged Identifiers .. 63

Firmware Update and In-Application-Programmer Upload Commands 63

Configuration and Status Commands ... 64

Mode Switching Commands ... 65

Data Transmission Commands ... 66

Register Value Save and Reset Command .. 68

Reference Setting and Offset Reset Command ... 69

Self-Test Command ... 69

IMU ID Setting Command ... 69

Gyroscope Settings Command ... 70

Accelerometer Settings Command ... 72

Magnetometer Settings Command ... 74

Filter Settings Command ... 77

UART Settings Commands ... 80

CAN Bus Settings Command .. 81

Appendix D – Disclaimer .. 85

LPMS User Manual ver. 2.6

7

I. Introduction

Welcome to the LP-Research Motion Sensor (LPMS) user manual.

In this manual we will explain everything you need to know to set up the LPMS hardware,

install its software and get started with integrating the sensor in your own software project. We

have put a lot of effort into making the LPMS a great product, but we are always eager to

improve and work on new developments. If you have any further questions or comments

regarding this manual, please feel free to contact us anytime.

This manual applies to the following series devices:

• LPMS-B2 Series (LPMS-B2, LPMS-B2 OEM)

• LPMS-U2 Series (LPMS-CU2, LPMS-URS2, LPMS-UTTL2)

• LPMS-AL2 Series (LPMS-CANAL2, LPMS-RS232AL2, LPMS-USBAL2)

• LPMS-CURS2 Series (LPMS-CURS2 RS232, LPMS-CURS2 CAN, LPMS-CURS2

TTL)

• LPMS-ME1 Series (LPMS-ME1 OEM, LPMS-ME1 DKN, LPMS-ME1 DK232)

For more information on the LPMS or other product series, please refer to related

documentations, available from the LP-Research website at the following address:

https://www.lp-research.com.

LPMS User Manual ver. 2.6

8

II. Overview

Measurement Output

The LP-Research Motion Sensor (LPMS) is a miniature, multi-purpose inertial

measurement unit. We designed the unit to be as small as possible so that it can be used in

a wide range of applications, from measuring the human motion to the stabilization of ground

vehicles or airplanes. The unit can measure orientation in 360 degrees about all three global

axes. Measurements are taken digitally and transmitted to a data analysis system in the form

of orientation quaternion or Euler angles. Whereas Euler angles are one way of describing

the orientation of an object, a quaternion allows orientation measurement without

encountering the so-called Gimbal’s lock.

This is achieved by using a four-element vector to express orientation around all axes

without being limited by singularities. A more in-depth explanation of the quaternion output of

the LPMS will follow further on in this manual. Optionally an LPMS can be equipped with a

barometric pressure sensor to extend the application range of the sensor and to be used e.g.

in connection with a GPS unit for global position measurements.

Technical Background

To measure the orientation of an object, the sensor internally uses three different sensing

units (four if the optional pressure sensor is used). These units are micro-electro-mechanical

system (MEMS) sensors that integrate complex mechanical and electronic capabilities on a

miniaturized device. The units used in the LPMS for orientation determination are a 3-axis

gyroscope (detecting angular velocity), a 3-axis accelerometer (detecting the direction of the

earth’s gravity field) and a 3-axis magnetometer to measure the direction of the earth

magnetic field. In principle orientation data about all three room-axes can be determined by

integrating the angular velocity data from the gyroscope.

However, through the integration step the error from the gyroscope measurements,

although it might be very small, has an exponential influence on the calculation causing the

resulting angle values to drift. Therefore, we correct the orientation data from the gyroscope

with information from the accelerometer (roll and pitch) and magnetometer (yaw) to calculate

orientation information of high accuracy and stability while guaranteeing fast sampling rates.

We combine the orientation information from the three sensing units using an extended

Kalman filter (EKF). The Kalman filter allows us to reduce the measurement error especially

in case of regular movements (e.g. human gait analysis, vehicle vibration analysis etc.). The

internal sampling and filtering rate of the sensor is 400Hz. The data stream frequency is

LPMS User Manual ver. 2.6

9

independent from the sampling and processing rate and can be adjusted depending on the

selected communication interface.

Figure 1 - Overview block diagram of the different components of the LPMS system.

Communication Methods

One of the strengths of the LPMS series is the diversity of offered communication

interfaces. LPMS devices can be connected through either Bluetooth 2, Bluetooth Low

Energy, USB, CAN bus, RS-232 or TTL-level serial interfaces. Depending on the capabilities

of the communication interface users can choose between transmission with our proprietary

(but well documented) LP-BUS and LP-CAN formats, plain ASCII (CSV) format, a minimal

CANopen implementation or a user defined CAN protocol.

Calibration

For accurate operation the sensor needs to be calibrated. The calibration procedure

includes the determination of gyroscope bias and gain, gyroscope movement threshold,

accelerometer misalignment, accelerometer offset and gain, and magnetometer interference

bias and gain. As the earth magnetic field can be distorted by metal or electromagnetic

sources within the vicinity of the sensor, the re-calibration of the magnetic sensor and re-

calculation of the sensor’s magnetic reference vector might be necessary when using the

sensor in different locations or under varying experiment environments. Later in this manual

we will describe in detail the calibration procedures necessary to guarantee the accuracy of

the measurements done by the sensor. We tried to automate the calibration procedures as

far as possible inside the firmware of the sensor to make usage as convenient as possible

for users.

To compensate the effects of a noisy earth magnetic field the LPMS can dynamically

adjust the intensity of the magnetometer compensation to the impact of magnetic

environment noise.

LPMS User Manual ver. 2.6

10

Size and Run-times

During development of the LPMS we tried to make the unit as small as possible to allow

a large variety of applications. For size reduction the actual sensing units and microcontroller

hardware are integrated into one mainboard with a multi-layer PCB design. Each version of

LPMS consists of two parts, the actual sensing hardware (microcontroller and MEMS

sensors) and communication electronics (USB, CAN bus etc.).

Application Areas

The LPMS is suitable for a wide range of applications. One of the applications focuses

for a small-scale motion sensor is the measurement of human movement for injury

rehabilitation, gait cycle analysis, surgical skill training etc. The sensor can also be effectively

used in the field of virtual reality, navigation, robotics, or for measuring vehicle dynamics. If

more than one sensor is used for a sensor network the motion of complex objects as

necessary in cinematic motion capturing or animation movie production is possible.

LPMS User Manual ver. 2.6

11

III. Operation

Device Specifications

Please refer to the corresponding quick start guides for device specifications and

connection diagrams. The quick start guides also describe the operational details of the

corresponding sensor types such as the meaning of LED indicators (where applicable).

Host Device Communication

Internally LPMS has two different communication modes:

Mode Description

Command mode In command mode the functionality of the sensor is accessed

command-by-command. Measurement data is transferred

from the sensor to the user by a special command. This

mode is suitable for adjusting the parameter settings of the

sensor and synchronized data-transfer.

Streaming mode

(default at power-on)

In streaming mode data is continuously sent from the sensor

to the host. This mode is suitable for simple and high-speed

data acquisition. Sensor parameters cannot be set in this

mode.

NOTE: The sensor is set to streaming mode by default after powering on. Command

mode may be set via the corresponding LP-BUS command. The current operation mode can

be saved into sensor flash memory. We will specify the available commands in detail later in

this manual.

For sensor with a CAN bus interface, data is initially streamed via CAN bus. Data

communication is switched to USB once the first LP-BUS command has been received

through the USB port.

For sensors with a serial interface, data is initially streamed via serial port. Data

communication is switched to USB once the first LP-BUS command has been received

through the USB port.

LPMS User Manual ver. 2.6

12

Bluetooth 2

To connect to the sensor, a Bluetooth connection request must be sent to the Bluetooth

MAC address of LPMS-B2. This MAC address is displayed as sensor device ID in the

LpmsControl application.

Users should connect to the Bluetooth module of LPMS-B2 using a standard class 2

Bluetooth host interface that supports SPP (serial protocol profile). A key-code for pairing is

not normally required. Should you be asked for a key-code anyway, enter “1234”.

Establishing a connection with the sensor usually takes around 2 to 5 seconds. The Bluetooth

device name of the sensor for device discovery is LPMS-B2. The baudrate of the Bluetooth

connection is 921600bit/s.

NOTE: Bluetooth communication always uses the LP-BUS binary format for input / output.

USB

The USB interface of the LPMS-USBAL2, LPMS-CU2 or LPMS-CURS2 internally uses

a serial-to-USB interface IC by the company Silabs:

https://www.silabs.com/products/interface/usb-bridges/classic-usb-

bridges/device.cp2102

There are two options for communication with the Silabs IC:

1. By downloading a virtual com port driver (VCP): This driver allows you to see the LPMS

as COM port in your operating system. All communication is done using standard COM

port access procedures. The default connection baudrate is 912.6Kbit/s, 8N1, with

hardware flow control.

2. By accessing the Silabs IC directly using a DLL library: Silabs offers a convenient

library that allows users to communicate with their USB interface ICs.

NOTE: USB communication always uses the LP-BUS binary format for input / output.

CAN Bus

Users should be able to communicate with LPMS-CU2, LPMS-CANAL2 or LPMS-

CURS2 CAN using any standard CAN interface. The CAN message uses standard 11 bits

identifier and 8 bytes of data. The default connection baud rate is 125Kbit/s.

CAN bus communication can be switched to one of the following formats:

1. CANopen (default) messages, output only

LPMS User Manual ver. 2.6

13

2. Sequential (custom) CAN messages, output only

3. LP-BUS binary format (LP-CAN)

NOTE: Format settings can be changed through LpmsControl application or direct LP-BUS

communication commands.

RS-232, TTL-level serial

The UART interface for both, RS232 and TTL-level serial uses a baud rate default

setting of 115200 bit/s, 8N1, no hardware flow control.

RS-232 and TTL-level serial communication can be switched to one of the following formats:

1. LP-BUS binary (default)

2. ASCII plain text

NOTE: Format settings can be changed through the LpmsControl application or direct LP-

BUS communication commands.

Orientation Data

The LPMS sensor calculates the orientation difference between a fixed sensor

coordinate system and a global reference coordinate system. The local and the global

reference coordinate systems used are defined as right-handed Cartesian coordinate

systems with:

• X positive when pointing to the magnetic west

• Y positive when pointing to the magnetic south

• Z positive when pointing up (gravity points vertically down with -1g)

LPMS User Manual ver. 2.6

14

Figure 2 - Axis orientation of LPMS-B2.

Figure 3 - Relationship between local sensor coordinate system and global coordinates.

LPMS User Manual ver. 2.6

15

See Figure 2 and Figure 3 displaying the orientation and relationship of local sensor and

earth global coordinate systems. The 3D orientation output is defined as the orientation

between the body-fixed coordinate system and the global coordinate system, using the global

coordinate system as reference.

A positive rotation is always right-handed, i.e. defined according to the right-hand rule

(corkscrew rule). This means a positive rotation is defined as clockwise in the direction of the

axis of rotation.

The definition used for Euler angles in this document is equivalent to roll, pitch,

yaw/heading. The Euler angles are of ZYX global type (subsequent rotation around global Z,

Y and X axis, also known as aerospace sequence).

 = Rotation around global X, defined from -180 °...180 °

 = Rotation around Y, defined from -90 °...90 °

 = Rotation around Z, defined from -180 °...180 °

NOTE: Due to the definition of Euler angles there is a mathematical singularity when the

sensor-fixed X-axis is pointing up or down in the global reference frame (i.e. pitch

approaches+/-90). This singularity is not present in quaternion output.

Sensor Orientation Alignment Modes

Heading reset

Often it is important that the global Z-axis remains along the vertical (defined by local

gravity vector), but the global X-axis has to be in a particular direction. In this case a heading

reset may be used. When performing a heading reset, the new global reference frame is

chosen such that the global X-axis points in the direction of the sensor while keeping the

global Z-axis vertical (along gravity, pointing upwards). In other words: The global Z-axis point

upwards along gravity, where the X and Y axis orthogonally form a perpendicular plane.

NOTE: After a heading reset, the yaw may not be exactly zero, this occurs especially when

the X-axis is close to the vertical. This is caused by the definition of the yaw when using Euler

angles, which becomes unstable when the pitch approaches +/-90 deg.

Alignment reset

The alignment reset function aims to facilitate in aligning the LPMS coordinate frame (S)

with the coordinate frame of the object to which the sensor is attached (O). After an alignment

reset, the S coordinate frame is changed to S’ as follows:

LPMS User Manual ver. 2.6

16

The S’ Z-axis is the vertical (up) at time of reset

The S’ X-axis equals the S X-axis but projected on the new horizontal plane.

The S’ Y-axis is chosen as to obtain a right-handed coordinate frame.

NOTE: Once this alignment reset is done, both calibrated data and orientation will be

output in the new coordinate frame (S’).

Object reset

The object reset aligns the LPMS coordinate frame to that of the object to which it is

attached (see Figure 4). The sensor must be attached in such a way that the X-axis is in the

XZ-plane of the object coordinate frame, i.e. the LPMS can be used to identify the X-axis of

the object. To preserve the global vertical, the object must be oriented such that the object

Z-axis is vertical. The alignment reset causes the new S’ coordinate frame and the object

coordinate frame to be aligned.

Figure 4 - The object reset aligns the sensor coordinate system with the object coordinate system.

NOTE: Since the sensor X-axis is used to describe the direction of the object X-axis, the

reset will not work if the sensor X-axis is aligned along the Z-axis of the object.

The object reset simply combines alignment reset and the heading reset at a single

instant in time. This has the advantage that all coordinate systems can be aligned with a

single action. Keep in mind that the new global reference X-axis (heading) is defined by the

LPMS User Manual ver. 2.6

17

object X-axis (to which XZ-plane you have aligned the LPMS).

Data Acquisition

Raw Sensor Data

The LPMS contains three MEMS sensors: A gyroscope, an accelerometer and a

magnetometer. The raw data from all three of these sensors can be accessed by the host

system based on the LP-BUS protocol. The raw sensor data can be used to check if the

current acquisition range of the sensors is enough and if the different sensors generate

correct output. Users can also implement their own sensor fusion algorithms using the raw

sensor data values. Sensor range and data sampling speed can be set by sending

commands to the firmware.

The LPMS is delivered in a factory-calibrated state, but it might be necessary to

recalibrate the sensors if the measurement environment changes (different ambient

electromagnetic field, strong temperature change). Please refer to the following sections for

a detailed introduction of sensor calibration methods.

Orientation Data

The LPMS has two orientation output formats: quaternion and Euler angle. As the Euler

angle representation of orientation is subject to the Gimbal lock, we strongly recommend

users to rely on quaternion representation for orientation calculation.

Filter Settings

Data from the three MEMS sensors is combined using an extended Kalman filter to

calculate the orientation data, like quaternion and Euler angle. To make the filter operate

correctly, its parameters need to be set in an appropriate way.

Filter Modes

The selection of the right filter mode is essential for a good performance of the

orientation calculation. The following filter modes are available:

Filter mode Description

Gyroscope only This mode uses only gyroscope data to calculate sensor orientation.

Pro: Very responsive, Low noise

Con: Accumulating offset due to integration of gyroscope bias error

LPMS User Manual ver. 2.6

18

Gyroscope +

accelerometer

(default mode)

Gyroscope-based orientation values are stabilized by

accelerometer measurements in the pitch and roll axis.

Pro: No drift on the pitch and roll axis

Con: Drift on yaw axis, slightly longer stabilization times than pure

gyroscope calculation

Calculation method: Kalman filter

Gyroscope +

accelerometer +

magnetometer

Gyroscope-based orientation values are stabilized by

accelerometer measurements in the pitch and roll axis and by

magnetometer measurements in the yaw axis.

Pro: No drift on all axes, especially in noise-free environment

Con: Prone to magnetic noise, slightly longer stabilization times

than pure gyroscope calculation, calibration necessary

Calculation method: Kalman filter

Gyroscope +

accelerometer

(DCM)

Gyroscope-based orientation values are stabilized by

accelerometer measurements in the pitch and roll axis.

Calculation method: DCM filter

Gyroscope +

accelerometer +

magnetometer

(DCM)

Gyroscope-based orientation values are stabilized by

accelerometer measurements in the pitch and roll axis and by

magnetometer measurements in the yaw axis.

Calculation method: DCM filter

Magnetometer Correction Setting

The amount by which the magnetometer corrects the orientation output of the sensor is

controlled by the magnetic correction settings. The following options are selectable through

LpmsControl or directly through the firmware commands.

Parameter presets Description

Dynamic (default) Magnetic correction is performed dynamically. The stronger

the detected magnetic noise the less the sensor will rely on

magnetometer data.

Weak Low reliance on magnetometer correction

Medium Medium reliance on magnetometer correction

Strong Strong reliance on magnetometer correction

LPMS User Manual ver. 2.6

19

Acceleration Compensation Setting

The amount by which the accelerometer corrects the orientation output of the sensor is

controlled by both linear acceleration and centripetal acceleration settings. The following

options are selectable through LpmsControl or directly through firmware commands.

Linear Acceleration Correction Settings

Parameter presets Description

Off No linear acceleration correction

Weak Weak linear acceleration correction

Medium (default) Medium linear acceleration correction

Strong Strong linear acceleration correction

Ultra Very strong linear acceleration correction

Rotational Acceleration Correction Settings

Parameter presets Description

Disable No centripetal acceleration correction

Enable (default) Centripetal acceleration correction is on

Gyroscope Threshold

This option has been deprecated with our latest sensor generation. This parameter

option in LpmsControl has no effect on sensor output.

Gyroscope Auto-calibration Function

As described earlier in this manual the selection of the following parameter values allows

the users to enable or disable the gyroscope auto calibration function. In auto calibration

mode the sensor fusion filter automatically detects if the sensor is in a stable / motion-less

state. If the sensor stays still for 2s, the currently sampled gyroscope data will be used to re-

calculate the gyroscope offset. Using this function will enhance the accuracy of the gyroscope

data in especially in changing temperature environments.

NOTE: For application cases that use LPMS to measure machine motion e.g. rotation of a

robot arm, gyroscope auto-calibration might not work well. The autocalibration algorithm might

detect a uniform rotation generated by a machine as a static state of the gyroscope and calibrate relative

to that machine motion. This will lead to unpredictable results. Tests need to be performed with

the actual application case to find out if autocalibration can be safely applied.

LPMS User Manual ver. 2.6

20

Parameter preset Description

Enable Switch gyroscope auto-calibration on

Disable Switch gyroscope auto-calibration off

Calibration Methods

Gyroscope Bias Calibration and Threshold

When the sensor is resting, the output data of the gyroscope should be close to 0. The

raw data from the gyroscope sensor has a constant bias of a certain value. This is related to

the mechanical structure of the gyroscope MEMS, which can slightly change its

characteristics depending e.g. on the environment temperature. There are two ways to

determine the gyroscope bias:

1. Automatic calibration: If the sensor is in a motion-less state for more than 7.5s the

gyroscope bias will be automatically readjusted.

2. Manual calibration: To determine the bias value manually the following calibration

procedure needs to be applied. Alternatively, to calibration from the LpmsControl application,

the calibration can also be triggered through direct communication with the sensor.

Step Description

1 Put the sensor in a resting (non-moving) position

2 Trigger the gyroscope calibration procedure either through a firmware

command or using the “Calibrate gyroscope” function in LpmsControl software

3 The gyroscope calibration will take around 30s. After that the gyroscope is

calibrated, normal operation can be resumed

The gyroscope threshold will set up an angular speed limit, below which the LPMS will

not process any motion data. This setting can be used to suppress noise or vibrations that

might impact the sensor measurements. Users should be careful when applying this

functionality, though, as motion information below the threshold will be lost and this might

significantly reduce the accuracy of the overall orientation measurement.

Magnetometer Calibration

During the magnetometer calibration procedure several parameters about the magnetic

LPMS User Manual ver. 2.6

21

environment close to the sensor are to be determined: magnetometer bias / gain on the X, Y

and Z-axis and length / direction of the local geomagnetic field vector. In most environments

the earth magnetic field is influenced by electromagnetic noise sources such as power lines,

metal etc. As a result the magnetic field becomes de-centered and deformed.

Figure 5 - Result of a successful magnetometer calibration. The green ellipsoid fit should be relatively close

to the red points of the magnetic field map. The magnetic noise indicator should be very low in vicinity of the

place where the calibration was done.

During the magnetometer calibration the amount of this deformation as well as the

average length of the magnetic field vector is calculated. This is usually also referred to as

hard-iron and soft-iron calibration. These parameters are tuned automatically using the

calibration procedures in the LpmsControl software:

Step Description

1 Start the magnetometer calibration using the LpmsControl software

(Calibration -> Calibrate mag.).

2 Follow the instructions of the calibration wizard. Rotate the sensor around its

LPMS User Manual ver. 2.6

22

yaw axis for 2-3 rotations.

3 Rotate the sensor around its pitch axis for 2-3 rotations.

4 Rotate the sensor around its roll axis for 2-3 rotations.

5 Rotate the sensor randomly to acquire data as much as possible from different

directions.

6 The collection of the field map data is finished after 40 seconds. This is

followed by calculation of the geomagnetic field vector (local earth magnetic

field inclination). Keep the sensor close to the calibration location and press

the Next button in the calibration wizard.

7 After 10 seconds the calibration is complete.

There are two methods for calibrating the hard iron offset and soft iron matrix:

1. Ellipsoid fit: Parameters are calculated by creating a map of the environment field and

then fitting an ellipsoid through the point data. The point cloud after rotating the sensor around

its axes should look like Figure 5.

2. Min / max fit: Parameters are calculated by measuring the minimum and maximum field

values for each axis during the sensor rotation process. This method can in principle be used

for planar magnetometer calibration. This is important in cases where the magnetometer is

fixed to a reference frame that can’t be rotated around all axes e.g. a car.

NOTE: The calculations for the magnetometer calibration are currently executed within the

LpSensor library running on the host. They can’t be triggered directly from communication

commands on the sensor.

IV. Communication Protocol

LP-BUS Protocol

LP-BUS is a communication protocol based on the industry standard MODBUS protocol.

It is the default communication format used by LPMS devices.

An LP-BUS communication packet has two basic command types, GET and SET, that

are sent from a host (PC, mobile data logging unit etc.) to a client (LPMS device). Later in

this manual we will show a description of all supported commands to the sensor, their type

and transported data.

LPMS User Manual ver. 2.6

23

GET Commands

Data from the client is read using GET requests. A GET request usually contains no data.

The answer from the client to a GET request contains the requested data.

SET Commands

Data registers of the client are written using SET requests. A SET command from the

host contains the data to be set. The answer from the client is either ACK (acknowledged)

for a successful write, or NACK (not acknowledged) for a failure to set the register occurred.

Packet Format

Each packet sent during the communication is based on the following structure:

Byte

Name Description

0 Packet start (3Ah) Data packet start

1 OpenMATID byte 1 Contains the low byte of the OpenMAT ID of the

sensor to be communicated with. The default value

of this ID is 1. The host sends out a GET / SET

request to a specific LPMS sensor by using this ID,

and the client answers to request also with the same

ID. This ID can be adjusted by sending a SET

command to the sensor firmware.

2 OpenMAT ID byte 2 High byte of the OpenMAT ID of the sensor.

3 Command # byte 1 Contains the low byte of the command to be

performed by the data transmission.

4 Command # byte 2 High byte of the command number.

5 Packet data length byte

1

Contains the low byte of the packet data length to be

transmitted in the packet data field.

6 Packet data length byte

2

High byte of the data length to be transmitted.

x

Packet data(n bytes)

If data length n not equal to zero, x = 6+1,

6+2…6+n.

Otherwise x = none.

This data field contains the packet data to be

transferred with the transmission if the data length

not equals to zero, otherwise the data field is empty.

LPMS User Manual ver. 2.6

24

7+n LRC byte 1 The low byte of LRC checksum. To ensure the

integrity of the transmitted data the LRC checksum is

used. It is calculated in the following way:

LRC = sum(OpenMAT ID, Command, Package data

length, and packet data byte no. 1 to no. x)

The calculated LRC is usually compared with the

LRC transmitted from the remote device. If the two

LRCs are not equal, and error is reported.

8+n LRC byte 2 High byte of LRC check-sum.

9+n Termination byte 1 0Dh

10+n Termination byte 2 0Ah

Data Format in a Packet Data Field

Generally, data is sent in little-endian format, low order byte first, high order byte last.

Data in the data fields of a packet can be encoded in several ways, depending on the type

of information to be transmitted. In the following we list the most common data types. Other

command-specific data types are explained in the command reference.

Identifier Description

Int32 32-bit signed integer value

Int16 16-bit signed integer value

Float32 32-bit float value

Vector3f 3 element 32-bit float vector

Vector3i16 3 element 16-bit signed integer vector

Vector4f 4 element 32-bit float vector

Vector4i16 4 element 16-bit signed integer vector

Matrix3x3f 3x3 element float value matrix

Sensor Measurement Data in Streaming Mode

In streaming mode, LP-BUS transports measurement data in the following form,

wrapped into the standard LP-BUS protocol. See the following chapter for examples of

transmission packets. The order of the sensor data chunks depends on which sensor data is

switched on

The following is the data types in 32-bit float transmission mode.

In 32-bit float transmission mode:

LPMS User Manual ver. 2.6

25

Chunk # Data type Sensor data

1 Float32 Timestamp (ms)

2 Vector3f Raw (uncalibrated) gyroscope data (deg/s)

3 Vector3f Raw (uncalibrated) accelerometer data (g)

4 Vector3f Raw (uncalibrated) magnetometer data (T)

5 Vector3f Angular velocity (rad/s)

6 Vector4f Orientation quaternion (normalized)

7 Vector3f Euler angle data (rad)

8 Vector3f Linear acceleration data (m/s2)

9 Float32 Barometric pressure (mPa)

10 Float32 Altitude (m)

11 Float32 Temperature (°C)

12 Float32 Heave motion (m) (optional)

In 16-bit transmission mode values are transmitted to the host with a multiplication factor

applied to increase precision:

Order # Data type Sensor data Factor

1 uint32 Timestamp (s) 400

2 Vector3i16 Raw (uncalibrated) gyroscope data (rad/s) 1000

3 Vector3i16 Raw (uncalibrated) accelerometer data (g) 1000

4 Vector3i16 Raw (uncalibrated) magnetometer data (T) 100

5 Vector3i16 Angular velocity (rad/s) 1000

6 Vector4i16 Orientation quaternion (normalized) 10000

7 Vector3i16 Euler angle data (rad) 10000

8 Vector3i16 Linear acceleration data (g) 1000

9 Int16 Barometric pressure (kPa) 100

10 Int16 Altitude (m) 10

11 Int16 Temperature (°C) 100

12 Int16 Heave motion (m) (optional) 1000

NOTE: Raw accelerometer data is transmitted with misalignment correction and scaling to

m/s2 units applied. Raw gyroscope data is transmitted with misalignment correction, bias

correction and scaling to rad/s applied. Raw magnetometer data is transmitted with

misalignment correction and scaling to T applied, hard and soft iron calibration is not

applied to raw magnetometer data transmitted directly from sensor.

LPMS User Manual ver. 2.6

26

Example Communication

In this section we will show a few practical examples of communication using the LP-

BUS protocol. For further practical implementation ideas check the open source code of

LpmsControl and LpSensor.

RequestSensor Configuration

GET request (HOST -> SENSOR)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 04h Command no. LSB (4d = GET_CONFIG)

4 00h Command no. MSB

5 00h Data length LSB (GET command = no data)

6 00h Data length MSB

7 05h Check sum LSB

8 00h Check sum MSB

9 0Dh Packet end 1

10 0Ah Packet end 2

Reply data (SENSOR -> HOST)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT LSB (ID = 1)

2 00h OpenMAT MSB

3 04h Command no. LSB (4d = GET_CONFIG)

4 00h Command no. MSB

5 04h Data length LSB (32-bit integer = 4 bytes)

6 00h Data length MSB

7 xxh Configuration data byte 1 (LSB)

8 xxh Configuration data byte 2

9 xxh Configuration data byte 3

10 xxh Configuration data byte 4 (MSB)

11 xxh Check sum LSB

12 xxh Check sum MSB

LPMS User Manual ver. 2.6

27

13 0Dh Packet end 1

14 0Ah Packet end 2

xx = Value depends on the current sensor configuration.

Request Gyroscope Range

GET request (HOST -> SENSOR)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 1Ah Command no. LSB (26d = GET_GYR_RANGE)

4 00h Command no. MSB

5 00h Data length LSB (GET command = no data)

6 00h Data length MSB

7 1Bh Check sum LSB

8 00h Check sum MSB

9 0Dh Packet end 1

10 0Ah Packet end 2

Reply data (SENSOR -> HOST)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 1Ah Command no. LSB (26d = GET_GYR_RANGE)

4 00h Command no. MSB

5 04h Data length LSB (32-bit integer = 4 bytes)

6 00h Data length MSB

7 xxh Range data byte 1 (LSB)

8 xxh Range data byte 2

9 xxh Range data byte 3

10 xxh Range data byte 4 (MSB)

11 xxh Check sum LSB

12 xxh Check sum MSB

13 0Dh Packet end 1

LPMS User Manual ver. 2.6

28

14 0Ah Packet end 2

xx = Value depends on the current sensor configuration.

Set Accelerometer Range

SET request (HOST -> SENSOR)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 1Fh Command no. LSB (31d = SET_ACC_RANGE)

4 00h Command no. MSB

5 04h Data length LSB (32-bit integer = 4 bytes)

6 00h Data length MSB

7 08h Range data byte 1 (Range indicator 8g = 8d)

8 00h Range data byte 2

9 00h Range data byte 3

10 00h Range data byte 4

11 2Bh Check sum LSB

12 00h Check sum MSB

13 0Dh Packet end 1

14 0Ah Packet end 2

Reply data (SENSOR -> HOST)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 00h Command no. LSB (0d = REPLY_ACK)

4 00h Command no. MSB

5 00h Data length LSB (ACK reply = no data)

6 00h Data length MSB

11 01h Check sum LSB

12 00h Check sum MSB

13 0Dh Packet end 1

14 0Ah Packet end 2

LPMS User Manual ver. 2.6

29

Read Sensor Data

Get request (HOST -> SENSOR)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT MSB

3 09h Command no. LSB (9d = GET_SENSOR_DATA)

4 00h Command no. MSB

5 00h Data length LSB (GET command = no data)

6 00h Data length MSB

7 0Ah Check sum LSB

8 00h Check sum MSB

9 0Dh Packet end 1

10 0Ah Packet end 2

Reply data (SENSOR -> HOST)

Packet byte no. Content Meaning

0 3Ah Packet start

1 01h OpenMAT ID LSB (ID = 1)

2 00h OpenMAT ID MSB

3 09h Command no. LSB (9d = GET_SENSOR_DATA)

4 00h Command no. MSB

5 34h Data length LSB (56 bytes)

6 00h Data length MSB

7-10 xxxxxxxxh Timestamp

11-14 xxxxxxxxh Gyroscope data x-axis

15-18 xxxxxxxxh Gyroscope data y-axis

19-22 xxxxxxxxh Gyroscope data z-axis

23-26 xxxxxxxxh Accelerometer x-axis

27-30 xxxxxxxxh Accelerometer y-axis

31-34 xxxxxxxxh Accelerometer z-axis

35-38 xxxxxxxxh Magnetometer x-axis

39-42 xxxxxxxxh Magnetometer y-axis

43-46 xxxxxxxxh Magnetometer z-axis

LPMS User Manual ver. 2.6

30

47-50 xxxxxxxxh Orientation quaternion q0

51-54 xxxxxxxxh Orientation quaternion q1

55-58 xxxxxxxxh Orientation quaternion q2

59-62 xxxxxxxxh Orientation quaternion q3

63 xxh Check sum LSB

64 xxh Check sum MSB

65 0Dh Message end byte 1

66 0Ah Message end byte 2

xx = Value depends on the current configuration and measurement value.

ASCII Format Output

In ASCII output mode sensor data is transmitted as plain ASCII numerical text. The

output format for each number is generally 16-bit integer, but with a multiplication factor

applied to increase precision. The following multiplication factors are used:

Chunk# Data type Sensor data Factor

1 uint32 Timestamp (s) 10000

2 Vector3i16 Raw (uncalibrated) gyroscope data (rad/s) 1000

3 Vector3i16 Raw (uncalibrated) accelerometer data (g) 1000

4 Vector3i16 Raw (uncalibrated) magnetometer data (T) 1000

5 Vector3i16 Angular velocity (rad/s) 1000

6 Vector4i16 Orientation quaternion (normalized) 100000

7 Vector3i16 Euler angle data (rad) 1000

8 Vector3i16 Linear acceleration data (g) 1000

9 Int16 Barometric pressure (kPa) 1000

10 Int16 Altitude (m) 10

11 Int16 Temperature (°C) 100

12 Int16 Heave motion (m) (optional) 1000

LP-CAN Protocol

To exchange data with LPMS through the CAN Bus interface, the serial LP-BUS protocol

is split into CAN bus messages. We call this CAN bus wrapper for the LP-BUS protocol: LP-

CAN.

A regular LP-CAN message is structured as shown below:

LPMS User Manual ver. 2.6

31

11-bit CAN identifier The CAN identifier of a CAN message. This identifier is

set to the value 514h+OpenMAT ID of target sensor for all

LP-CAN transmissions.

8 data bytes Contains the actual data to be transmitted in a CAN

message.

An example packet with 4 data bytes wrapping from LP-BUS to LP-CAN results in the

following CAN messages:

CAN Message #1:

Byte # Name Description

0 Packet start (3Ah) Mark of the beginning of a data packet.

1 OpenMATID

byte 1

Contains the low byte of the OpenMAT ID of the

sensor to be communicated with. The default value

of this ID is 1. The host sends out a GET / SET

request to a specific sensor by using this ID, and the

client answers to request alsowith the same ID. This

ID can be adjusted by sending a SET command to

the sensor firmware.

2 OpenMAT ID

byte 2

High byte of the OpenMAT ID of the sensor.

3 Command no.

byte 1

Contains the low byte of the command to be

performed by the data transmission.

4 Command no.

byte 2

High byte of the command number.

5 Packet data length

byte 1

Contains the low byte of the packet data length to be

transmitted in the packet data field (in this example

4)

6 Packet data length

byte 2

High byte of the data length to be transmitted (in this

example 0)

7 Packet data Packet data byte 0

CAN Message #2:

Byte # Name Description

0 Packet data Packet data byte 1

LPMS User Manual ver. 2.6

32

1 Packet data Packet data byte 2

2 Packet data Packet data byte 3

3 LRC byte 1 The low byte of LRC check-sum.

4 LRC byte 2 High byte of LRC check-sum.

5 Termination byte 1 0Dh

6 Termination byte 2 0Ah

7 Not used 0

The number of messages needed to contain the data depends on the length of the data

to be transmitted. Each CAN message is 8 bytes long. Unused bytes of a message are filled

with 0.

CANopen and Sequential CAN Protocol

In CANopen and sequential CAN transmission mode, two or more output words of

measurement data can be assigned to a CAN channel. In sequential CAN mode the channel

addressing can be individually controlled. In CANopen mode, 4 TPDO (Transmission Data

Process Object) messages and a heartbeat message are transmitted. Sensor data is

assigned to specific messages either using the LpmsControl application or direct LP-BUS

communication.

Data is continuously sent from the sensor to the host with the streaming frequency

selected in the LpmsControl application at the selected baudrate. The data to be transmitted

can be selected to adjust the bus bandwidth used by the LPMS system.

NOTE: In CANopen mode a heartbeat message is transmitted with a frequency between

0.1 Hz and 2 Hz.

The format of CANopen and Sequential CAN bus messages is controlled by the following

parameters:

• Channel mode

• Value mode

• Start ID:

• IMU ID

In CANopen mode, the message base address is calculated in the following way:

 Base CAN ID = Start ID+ IMU ID

LPMS User Manual ver. 2.6

33

In sequential CAN mode, the message base address is calculated in the following way:

 Base CAN ID = Start ID + (IMU ID - 1)*8

Therefore, using these parameters the following message formats can be adjusted:

Parameter settings Resulting channel message setup

Channel mode = Sequential

Value mode = 16-bit fixed point

(signed)

StartID = 514h

IMU ID = 1

CAN message #1:

CAN ID = 514h,

CAN data:

1st 16 bits: Channel 1 data

2nd 16 bits: Channel 2 data

3rd 16 bits: Channel 3 data

4th 16 bits: Channel 4 data

CAN message #2:

CAN ID = 515h,

CAN data:

1st 16 bits: Channel 5 data

2nd 16 bits: Channel 6 data

3rd 16 bits: Channel 7 data

4th 16 bits: Channel 8 data

CAN message #3

CAN ID = 516h,

CAN data:

1st 16 bits: Channel 9 data

2nd 16 bits: Channel 10 data

3rd 16 bits: Channel 11 data

4th 16 bits: Channel 12 data

CAN message #4:

CAN ID = 517h,

CAN data:

1st 16 bits: Channel 13 data

2nd 16 bits: Channel 14 data

3rd 16 bits: Channel 15 data

4th 16 bits: Channel 16 data

LPMS User Manual ver. 2.6

34

Channel mode = Sequential

Value mode = 32-bit floating point

Start ID = 514h

IMU ID = 1

CAN message #1:

CAN ID = 514h,

CAN data:

1st 32 bits: Channel 1 data

2nd 32 bits: Channel 2 data

CAN message #2:

CAN ID = 515h,

CAN data:

1st 32 bits: Channel 3 data

2nd 32 bits: Channel 4 data

CAN message #3:

CAN ID = 516h,

CAN data:

1st 32 bits: Channel 5 data

2nd 32 bits: Channel 6 data

CAN message #4:

CAN ID = 517h,

CAN data:

1st 32 bits: Channel 7 data

2nd 32 bits: Channel 8 data

CAN message #5:

CAN ID = 518h,

CAN data:

1st 32 bits: Channel 9 data

2nd 32 bits: Channel 10 data

CAN message #6:

CAN ID = 519h,

CAN data:

1st 32 bits: Channel 11 data

2nd 32 bits: Channel 12 data

LPMS User Manual ver. 2.6

35

CAN message #7:

CAN ID = 51Ah,

CAN data:

1st 32 bits: Channel 13 data

2nd 32 bits: Channel 14 data

CAN message #8:

CAN ID = 51Bh,

CAN data:

1st 32 bits: Channel 15 data

2nd 32 bits: Channel 16 data

Channel mode = CANopen

Value mode = 16-bit fixed point

(signed)

Start ID = 180h

IMU ID = 1

CAN message #1:

CAN ID = 181h,

CAN data:

1st 16 bits: Channel 1 data

2nd 16 bits: Channel 2 data

3rd 16 bits: Channel 3 data

4th 16 bits: Channel 4 data

CAN message #2:

CAN ID = 281h,

CAN data:

1st 16 bits: Channel 5 data

2nd 16 bits: Channel 6 data

3rd 16 bits: Channel 7 data

4th 16 bits: Channel 8 data

CAN message #3

CAN ID = 381h,

CAN data:

1st 16 bits: Channel 9 data

2nd 16 bits: Channel 10 data

3rd 16 bits: Channel 11 data

4th 16 bits: Channel 12 data

LPMS User Manual ver. 2.6

36

CAN message #4:

CAN ID = 481h,

CAN data:

1st 16 bits: Channel 13 data

2nd 16 bits: Channel 14 data

3rd 16 bits: Channel 15 data

4th 16 bits: Channel 16 data

Channel mode = CANopen

Value mode = 32-bit floating point

Start ID = 180h

IMU ID = 1

CAN message #1:

CAN ID = 181h,

CAN data:

1st 32 bits: Channel 1 data

2nd 32 bits: Channel 2 data

CAN message #2:

CAN ID = 281h,

CAN data:

1st 32 bits: Channel 3 data

2nd 32 bits: Channel 4 data

CAN message #3:

CAN ID = 381h,

CAN data:

1st 32 bits: Channel 5 data

2nd 32 bits: Channel 6 data

CAN message #4:

CAN ID = 481h,

CAN data:

1st 32 bits: Channel 7 data

2nd 32 bits: Channel 8 data

CAN message #5:

CAN ID = 581h,

CAN data:

LPMS User Manual ver. 2.6

37

1st 32 bits: Channel 9 data

2nd 32 bits: Channel 10 data

CAN message #6:

CAN ID = 681h,

CAN data:

1st 32 bits: Channel 11 data

2nd 32 bits: Channel 12 data

CAN message #7:

CAN ID = 781h,

CAN data:

1st 32 bits: Channel 13 data

2nd 32 bits: Channel 14 data

CAN message #8:

CAN ID = 881h,

CAN data:

1st 32 bits: Channel 15 data

2nd 32 bits: Channel 16 data…

Transmitted units in 32-bit float mode:

Data type Unit

Raw (uncalibrated) angular speed (gyroscope) radians/s

Raw (uncalibrated) acceleration (accelerometer) g

Raw (uncalibrated) magnetic field strength (magnetometer) T

Euler angle radians

Linear acceleration g

Quaternion normalized units

In 16-bit integer modes values are multiplied with a constant factor after transmission to

increase precision:

Data type Unit

Factor

Raw (uncalibrated) angular speed (gyroscope) radians/s 1000

LPMS User Manual ver. 2.6

38

Raw (uncalibrated) acceleration (accelerometer) g 1000

Raw (uncalibrated) magnetic field strength

(magnetometer)

T 100

Angular Velocity radians/s 1000

Quaternion normalized units 10000

Euler angle radians 10000

Linear acceleration g 1000

Barometric pressure kPa 100

Altitude m 10

Temperature °C 100

Heave motion (optional) m 1000

LPMS User Manual ver. 2.6

39

V. Data Acquisition Software and API

LPMS-Control Software

The LPMS-Control application allows users to control various aspects of an LPMS

device from a PC. The application has the following core functionality:

• List all LPMS devices connected to the system

• Connect to up to 256 sensors simultaneously

• Adjust all sensor parameters (sensor range etc.).

• Set orientation offsets

• Initiate accelerometer, gyroscope and magnetometer calibration.

• Display the acquired data in real-time either as line graphs or a 3D image

• Record data from the sensors to a CSV data file

• Play back data from a previously recorded CSV file

• Upload new firmware and in-application-programming software to the sensor

LPMS-Control can be downloaded directly from the LP-Research website.

GUI Elements

Toolbar Items

The key functionality of LpmsControl can be accessed via the toolbar. See an overview

of the toolbar in Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6 - Connection toolbar

LPMS User Manual ver. 2.6

40

Figure 7 - Recording and playback toolbar

Figure 8 - Orientation offset toolbar

Figure 9 - Window selector

Menu Items

Menu title Menu item Operation

Connect

menu

 Connect Connects to sensor selected in

"Preferred devices" list

 Disconnect Disconnects sensor currently selected

in "Connected devices" list

 Add / remove sensor Opens "Scan devices" dialog

LPMS User Manual ver. 2.6

41

 Exit program Exits the application

Measurement

menu

 Stop measurement Toggles measurement

 Browse record file Opens browser for selectinga file for

data recording

 Record data Toggles data recording

 Browse replay file

Opens browser for selecting a

playback file

 Playback data Starts data playback

Calibration

menu

 Calibrate gyroscope Starts manual gyroscope calibration

 Calibrate mag. (ellipsoid fit) Starts magnetometer calibration

wizard for ellipsoid fit calibration

 Calibrate mag. (min/max fit) Starts magnetometer calibration

wizard for min/max fit calibration

 Save parameters to sensor Saves parameters to sensor flash

memory

 Save calibrationfile Saves file with calibration data

 Load calibrationfile Loads file with calibration data

 Set offset Sets sensor orientation offset

(depending on "Reset target" and

"Reset method")

 Reset offset Resets sensor orientation offset

(depending on "Reset target")

LPMS User Manual ver. 2.6

42

 Arm timestamp reset Arms hardware timestamp reset

 Reset to factory settings Resets sensor settings to factory

default

View

 Graph window Selects raw data graph window

 Orientation window Selects orientation graph window

 Pressure window Selects pressure graph window

 3D visualization Selects 3D visualization window

 3D view mode 1 Selects view mode 1

 3D view mode 2 Selects view mode 2

 3D view mode 4 Selects view mode 4

 Load object file Loads 3D OBJ file

Advanced

 Upload firmware

Uploads firmware file

 Upload IAP

Uploads in-application-programmer

file

 Start self test

Starts self-test

 Calibrate acc. misalignment

Starts accelerometer calibration

wizard

 Calibrate gyr. misalignment

Starts gyroscope calibration wizard

 Calibrate mag. misalignment

(HH-coils)

Starts magnetometer calibration

wizard (Helmholtz coils mode)

LPMS User Manual ver. 2.6

43

 Calibrate mag. misalignment

(auto)

Starts magnetometer calibration

wizard (automatic mode)

 Version info Displays version information dialog

Connected Devices List

Devices connected to the system are shown in the Connected devices list. Through this

list each sensor parameter can be adjusted according to the table below.

Top level item Parameter item Description

Status

 Connection Displays the current connection status

OK: Connection successful

In progress: Currently connecting

Failed: Connection failed

 Sensor status Displays the current sensor status

Started: Sensor measurement is running

Stopped: Sensor measurement stopped

 Device ID Current device ID

 Firmware version Firmware version

ID / sampling rate

 IMU ID Selects OpenMAT ID

 Transmission rate Selects data transmission rate

Range

 GYR range Selects gyroscope range

 ACC range Selects accelerometer range

 MAG range Selects magnetometer range

Filter

 Filter mode Selects filter mode

 MAG correction Selects magnetometer correction mode

 Lin. ACC correction Selects linear acceleration correction

mode

 Rot. ACC Selects centripetal acceleration correction

LPMS User Manual ver. 2.6

44

correction

 GYR threshold Selects gyroscope threshold

 GYR

autocalibration

Selects auto-calibration setting

 Low-pass filter Selects low-pass filter setting (deprecated)

Data

 LP-BUS data mode Switches between 16-bit integer or 32-bit

floating point mode

 Enabled data Selects data to be enabled for

transmission from the sensor

UART (RS-232/TTL)

 Baud rate Selects the UART transmission baud rate

 Data format Switches between LP-BUS and ASCII

format output

CAN bus

 CAN baudrate Selects baud rate for CAN communication

 Channel mode Selects CAN channel mode

 Value mode Selects CAN value mode

 Start ID CAN start ID for sequential mode

 Heartbeat freq. Heartbeat frequency

 Channel 1-16 CAN channel assignment

NOTE: Parameter adjustments are normally only persistent until the sensor is switched off.

You can permanently save the newly adjusted parameters to the LPMS flash memory by

selecting Save parameters to sensor in the Calibration menu of LPMS-Control.

Scanning, Discovering and Saving Devices

Discovering devices, especially Bluetooth devices, can be quite time-consuming.

Therefore LPMS-Control allows scanning for devices once and then saves the device

identification in a list of preferred devices. Figure 10 shows the device discovery dialog. To

add a device to the preferred devices list, please follow the steps below:

1. Click "Scan devices" and wait until the scanning process is finished.

2. Select the target device from the discovered devices list

3. Click "Add device" to add the device to the Preferred devices list

4. Click Save devices to save the list of preferred devices

LPMS User Manual ver. 2.6

45

Figure 10 - Discover devices dialog

Connecting and Disconnecting a Device

To connect to an LPMS device, please follow the steps below.

1. Select device to connect to in "Preferred devices" dropdown list.

2. Click "Connect" button.

3. Sensor status should now be "Connecting..".

4. Connection establishment should take between 2 and 5 seconds.

If the connection is successful, the sensor status should switch to "Connected". The

sensor will start measuring automatically after connecting. Should the connection procedure

fail for some reason, “Failed” will be displayed. If a successful connection is interrupted the

connection status will change to "Connection interrupted".

NOTE: Please make sure that you have no 3rd party Bluetooth driver (Toshiba, Bluesoleil

etc.) installed on your system. LPMS-Control uses the native Windows Bluetooth driver and

LPMS User Manual ver. 2.6

46

any other driver will block communication with the native Windows driver. The Windows

Bluetooth pairing functionality will be automatically started when connecting to the sensor

from LPMS-Control. A PIN code should not be required for connecting with the LPMS.

Recording and Playing Back Data

LPMS-Control allows recording and playback of sensor data. Recorded data is saved in

a CSV format that can be easily processed by Excel, MATLAB etc. Saved files can be loaded

into LPSM-Control and played back. Now only playback of the sensor with the lowest

OpenMAT ID in the file is possible. To start data recording please follow the steps below:

1. Select "Measurement" ->"Browse record file" and choose a filename that you would

like to record to.

2. Start the recording by selecting "Measurement -> Record" data.

3. Once you have collected enough data stop the recording by selecting "Measurement"

->"Stop recording".

To replay a data file, do the following:

1. Select "Measurement" ->"Browse replay" file and select a file that you would like to

replay.

2. Start replay by selecting "Measurement" ->"Replay data".

3. Replay will loop automatically. Once you would like to stop replay select

"Measurement" ->"Stop replay data".

NOTE: LPMS-Control automatically applies calibration parameters to raw sensor data and

therefore records and displays calibrated sensor data.

Switching View Modes

LPMS-Control can visualize sensor orientation data either as data graphs or as 3D

representation. In 3D view mode the orientation of the sensor is shown as a 3D cube. Up to

4 sensors can be shown simultaneously in one window. In this multi-view mode, which

sensors are visualized can be adjusted by assigning an IMU ID to each window (see Figure

11).

LPMS User Manual ver. 2.6

47

Figure 11 - Viewing the orientation of 4 connected LPMS at the same time

By selecting Load object file from the View menu, custom 3D data can be loaded into

LPMS-Control as shown in Figure 12.

NOTE: LPMS-Control so far only supports the OBJ file format for loading 3D CAD files. We

recommend exporting files in this format from the open-source 3D visualizer Meshlab:

http://meshlab.sourceforge.net/

Figure 12 - Custom 3D OBJ data can be loaded into the visualization window

LPMS User Manual ver. 2.6

48

Uploading New Firmware

Please follow the following steps carefully when you are updating the sensor firmware. Invalid

operation might result in an incomplete firmware update and brick the sensor.

1. Start your current LPMS-Control software.

2. Connect to the sensor you would like to update.

3. Choose the “Save parameters to file” function from the “Calibration” menu of LPMS-

Control to save the current sensor calibration results into a .txt file on your local

host system.

4. Select Upload firmware function in the “Advanced” menu.

5. Click OK and select the new firmware file. Be careful that you select the right file

which should be named as LpmsXFirmwareX.X.X.bin (with X being the sensor type

identifier and firmware version).

6. Wait for the upload process to finish. It should take around 30 seconds. At around

15s the green LED on the sensor should begin to blink rapidly (~10 Hz).

7. Disconnect from the sensor and exit LPMS-Control.

8. Now install the new LPMS-Control application. The previous LPMS-Control

application does not need to be un-installed.

9. Start LPMS-Control and connect to your sensor.

10. Choose the “Load parameters fromfile” function from the “Calibration” menu of

LPMS-Control to recover the previous sensor calibration results.

11. Choose the “Save parameters”tosensor function from the calibration menu of

LPMS-Control to save the previous sensor calibration results into sensor flash.

12. The update is finished. Make sure everything works as expected.

APIs

We offer various libraries to allow users to communicate directly with LPMS devices:

OpenZen (All sensor types, C/C++/C#) - recommended for new developments

OpenZen is our main library to control all aspects of the sensors. It offers a unified

C/C++ API for all sensor types and is the base library for our LpmsControl

application. OpenZen builds on Windows, Linux and Android. In the future we will

extend OpenZen with further bindings for C#, Python etc.

Repository: https://bitbucket.org/lpresearch/openzen/src/master/

Documentation: https://lpresearch.bitbucket.io/openzen/latest/

Binaries:

https://lpresearch.bitbucket.io/openzen/latest/

LPMS User Manual ver. 2.6

49

https://bitbucket.org/lpresearch/openzen/downloads/OpenZen-

Release-1.0-x64.zip

LpSensor / OpenMAT (All sensor types, C/C++) - deprecated

The LpSensor library contains classes that allow a user to integrate LPMS devices

into their own applications. Library binaries for Windows Visual Studio are

released together with our (deprecated) OpenMAT software package. Please

download OpenMAT directly from the LP-Research website. Please see further

description of the library in the appendix. LpSensor will eventually be replaced by

OpenZen.

Binary download: https://lp-research.com/support/

Repository: https://bitbucket.org/lpresearch/openmat-2-

os/src/master/

LpSensorPy (LPMS-B2 / LPMS-ME1, Python)

LpSensorPy is a Python library for LPMS-B2 and LPMS-ME1.

Repository:

https://bitbucket.org/lpresearch/lpsensorpy/src/master/

LpSensorJava (LPMS-B2, Java)

LpSensorJava is a Java library for LPMS-B2 sensors. LpSensorJava library uses

Bluetooth SPP to communicate with LPMS-B2 sensors. Please refer to

LpmsB2ForAndroid further down for Android support.

Repository:

https://bitbucket.org/lpresearch/lpsensorjava/src/master/

ROS Driver (All sensor types, C++ / The Robot Operating System)

A ROS driver for LP-Research IMU sensors. The driver relies on the LpSensor

library.

Repository: https://github.com/larics/lpms_imu

LpSensorMatlab (All sensors, Matlab)

MATLAB library to interface with LPMS Sensors. This library uses com port to

communicate with LPMS sensors. LPMS Sensors's usb virtual com port (VCP)

functionality is disabled by default. Please use LpVCPConversionTool to enable

VCP support.

LPMS User Manual ver. 2.6

50

Repository:

https://bitbucket.org/lpresearch/lpsensormatlab/src/master/

OpenZenUnity (All sensor types, Unity C# example project)

Unity Demo for use with OpenZen. Connect a LP-Research IMU via USB or

Bluetooth and open the Unity project. Once you loaded the project, click on Assets

-> Scenes in the Project explorer and double-click the DiscoverSensorsScene item.

You can start the project; this may take a couple of seconds because OpenZen

searches for all connected sensors. After this, you can select one sensor and should

see the virtual sensor rotate, if you rotate the real-world sensor. You may need to

move the Unity camera to align the rotation directions between the virtual and real-

world sensor.

The scene ConnectByNameScene demonstrates how you can connect to a sensor

directly without running the sensor discovery first.

Repository:

https://bitbucket.org/lpresearch/openzenunity/

CSharpLibraryForB2 (LPMS-B2, C#)

CSharpLibraryForB2 is a C# library to access LPMS-B2.

Repository:

https://bitbucket.org/lpresearch/csharplibraryforb2/src/master/

LpmsB2ForAndroid (LPMS-B2, Android Java)

Android Java library to communicate with LPMS-B2.

Repository:

https://bitbucket.org/lpresearch/lpmsb2forandroid/src/master/

LPMS User Manual ver. 2.6

51

VI. APPENDIX

Appendix A – LpSensor Library Documentation

The LpSensor library contains classes that allow a user to integrate LPMS devices into

their own applications. Library binaries for Windows Visual Studio are released together with

our (deprecated) OpenMAT software package. Please download OpenMAT directly from the

LP-Research website.

Compiling applications that use the LpSensor library requires the following components:

Header files (usually in C:/OpenMAT/include):

LpmsSensorManagerI.h Contains the interface for the LpmsSensorManager class.

LpmsSensorI.h Contains the interface for the LpmsSensor class

ImuData.h Structure for containing output data from a LPMS device

LpmsDefinitions.h Macro definitions for accessing LPMS

DeviceListItem.h Contains the class definition for an element of a LPMS

device list

LIB files (usually in C:/OpenMAT/lib/x86):

LpSensorD.lib LpSensor library (Debug version)

LpSensor.lib LpSensor library (Release version)

DLL files (usually in C:/OpenMAT/lib/x86):

LpSensorD.dll LpSensor library (Debug version)

LpSensor.dll LpSensor library (Release version)

PCANBasic.dll PeakCAN library DLL for CAN interface communication (optional).

ftd2xx.dll The FTDI library to communicate with an LPMS over USB.

To compile the application please do the following:

1. Include LpmsSensorManagerI.h.

2. Add LpSensor.lib (or LpSensorD.lib if you are compiling in debug mode) to the link

libraries file list of your application

3. Make sure that you set a path to LpSensor.dll / LpSensorD.dll, PCANBasic.dll (optional)

and ftd2xx.dll so that the runtime file of your application can access them.

4. Build your application.

LPMS User Manual ver. 2.6

52

Important Classes

SensorManager

The sensor manager class wraps a number of LpmsSensor instances into one class, handles

device discovery and device polling. For user applications the following methods are most

commonly used. Please refer to the interface file SensorManagerI.h for more information.

NOTE: An instance of LpmsSensor is returned by the static function

LpmsSensorManagerFactory(). See the example listing in the next section for more

information how to initialize a LpmsSensorManager object.

NOTE: LpSensor automatically applies calibration parameters to raw sensor data and

therefore records and outputs calibrated sensor data.

Method name SensorManager(void)

Parameters none

Returns SensorManager object

Description Constructor of a SensorManager object.

Method name LpSensor* addSensor(int mode, string deviceId)

Parameters mode The device type to be connected. The following

device types are available:

Macro Device type

DEVICE_LPMS_B LPMS-B

DEVICE_LPMS_C LPMS-CU (CAN

mode)

DEVICE_LPMS_U LPMS-CU (USB

mode)

deviceId Device ID of the LPMS device. The ID is equal to

the OpenMAT ID (initially set to 1, user definable).

Returns Pointer to LpSensor object.

Description Adds a sensor device to the list of devices adminstered by the

SensorManager object.

Method name void removeSensor(LpSensor *sensor)

LPMS User Manual ver. 2.6

53

Parameters sensor Pointer to LpSensor object that is to be removed from

the list of sensors. The call to removeSensor frees the

memory associated with the LpSensor object.

Returns none

Description Removes a device from the list of currently administered sensors.

Method name void listDevices(std::vector<DeviceListItem> *v)

Parameters *v Pointer to a vector containing DeviceListItem objects

with information about LPMS devices that have been

discovered by the method.

Returns None

Description Lists all connected LPMS devices. The device discovery runs in a

seperate thread.For Bluetooth devices should take several

seconds to be added to the devicelist. CAN bus and USB devices

should be added after around 1s.

LpmsSensor

This is a class to access the specific functions and parameters of an LPMS. The most

commonly used methods are listed below. Please refer to the interface file LpmSensorI.h for

more information.

NOTE: The following units are used by LpmsSensor for measured and processed sensor

data:

Data type Units

Angular velocity (gyroscope) rad/s

Acceleration (accelerometer) g

Magnetic field strength (magnetometer) T

Euler angle radians

Linear acceleration g

Quaternion normalized units

Barometric pressure mPa

Altitude M

Temperature °C

Method name void run(void)

LPMS User Manual ver. 2.6

54

Parameters None

Returns None

Description Starts the data acquisition procedure.

Method name void pause(void)

Parameters None

Returns None

Description Pauses the data acquisition procedure.

Method name int getSensorStatus(void)

Parameters None

Returns Sensor state identifier:

Macro Sensor state

SENSOR_STATUS_PAUSED Sensor is currently

paused.

SENSOR_STATUS_RUNNING Sensor is currently

acquiring data.

SENSOR_STATUS_CALIBRATING Sensor is currently

calibrating.

SENSOR_STATUS_ERROR Sensor has detected an

error.

SENSOR_STATUS_UPLOADING Sensor is currently

receiving new firmware

data.

Description Retrieves the current sensor status.

Method name int getConnectionStatus(void)

Parameters None

LPMS User Manual ver. 2.6

55

Returns Connection status identifier:

Macro Sensor state

SENSOR_CONNECTION_CONNECTED Sensor is connected.

SENSOR_CONNECTION_CONNECTING Connection is

currently being

established.

SENSOR_CONNECTION_FAILED Attempt to connect

has failed.

SENSOR_CONNECTION_INTERRUPTED Connection has been

interrupted.

Description Retrieves the current connection status.

Method name void startResetReference(void)

Parameters None

Returns None

Description Resets the current accelerometer and magnetometer reference.

Please see the ‘Operation’ chapter for details on the reference

vector adjustment procedure.

Method name void startCalibrateGyro(void)

Parameters None

Returns None

Description Starts the calibration of the sensor gyroscope.

Method name void startMagCalibration(void)

Parameters None

Returns None

Description Starts the calibration of the LPMS magnetometer.

Method name CalibrationData* getConfigurationData(void)

Parameters None

Returns Pointer to CalibrationData object.

Description Retrieves the CalibrationData structure containing

theconfigurationparameters ofthe connected LPMS.

LPMS User Manual ver. 2.6

56

Method name bool setConfigurationPrm(int parameterIndex, int

parameter)

Parameters parameterIndex The parameter to be adjusted.

parameter The new parameter value.

Supported parameterIndex identifiers:

Macro Description

PRM_OPENMAT_ID Sets the current OpenMAT

ID.

PRM_FILTER_MODE Sets the current filter mode.

PRM_PARAMETER_SET Changes the current filter

preset.

PRM_GYR_THRESHOLD_ENABLE Enables / diables the

gyroscope threshold.

PRM_MAG_RANGE Modifies the current

magnetometer sensor range.

PRM_ACC_RANGE Modifies the current

accelerometer sensor range.

PRM_GYR_RANGE Modifies the current

gyroscope range.

Supported parameter identifiers for each parameter index:

PRM_OPENMAT_ID

Integer ID number between 1 and 255.

PRM_FILTER_MODE

Macro Description

FM_GYRO_ONLY Only gyroscope

FM_GYRO_ACC Gyroscope + accelerometer

FM_GYRO_ACC_MAG_NS Gyroscope + accelerometer +

magnetometer

PRM_PARAMETER_SET

Macro Description

LPMS_FILTER_PRM_SET_1 Magnetometer correction

“dynamic” setting.

LPMS User Manual ver. 2.6

57

LPMS_FILTER_PRM_SET_2 Strong

LPMS_FILTER_PRM_SET_3 Medium

LPMS_FILTER_PRM_SET_4 Weak

PRM_GYR_THRESHOLD_ENABLE

Macro Description

IMU_GYR_THRESH_DISABLE Enable gyr. threshold

IMU_GYR_THRESH_ENABLE Disable gyr. thershold

PRM_GYR_RANGE

Macro Description

GYR_RANGE_250DPS Gyr. Range = 250 deg./s

GYR_RANGE_500DPS Gyr. Range = 500 deg./s

GYR_RANGE_2000DPS Gyr. Range = 2000 deg./s

PRM_ACC_RANGE

Macro Description

ACC_RANGE_2G Acc. range = 2g

ACC_RANGE_4G Acc. range = 4g

ACC_RANGE_8G Acc. range = 8g

ACC_RANGE_16G Acc. range = 16g

PRM_MAG_RANGE

Macro Description

MAG_RANGE_130UT Mag. range = 130uT

MAG_RANGE_190UT Mag. range = 190uT

MAG_RANGE_250UT Mag. range = 250uT

MAG_RANGE_400UT Mag. range = 400uT

MAG_RANGE_470UT Mag. range = 470uT

MAG_RANGE_560UT Mag. range = 560uT

MAG_RANGE_810UT Mag. range = 810uT

Returns None

Description Sets a configuration parameter.

Method name bool getConfigurationPrm(int parameterIndex, int

*parameter)

LPMS User Manual ver. 2.6

58

Parameters parameterIndex The parameter to be adjusted.

parameter Pointer to the retrieved parameter

value.

See setConfigurationPrm method for an explanation of supported

paramer indices and parameters.

Returns None

Description Retrieves a configuration parameter.

Method name void resetOrientation(void)

Parameters None

Returns None

Description Resets the orientation offset of the sensor.

Method name void saveCalibrationData(void)

Parameters None

Returns None

Description Starts saving the current parameter settings to the sensor flash

memory.

Method name virtual void getCalibratedSensorData(float g[3],

float a[3], float b[3])

Parameters g[0..2] Calibrated gyroscope data (x, y, z-axis).

a[0..2] Calibrated accelerometer data (x, y, z-axis).

b[0..2] Calibrated magnetometer data (x, y, z-axis).

Returns None

Description Retrieves calibrated sensor data (gyroscope, accelerometer,

magnetometer).

Method name virtual void getQuaternion(float q[4])

Parameters q[0..3] Orientation quaternion (qw, qx, qy, qz)

Returns None

Description Retrieves the 3d orientation quaternion.

Method name virtual void getEulerAngle(float r[3])

Parameters r[0..2] Euler angle vector (around x, y, z-axis)

LPMS User Manual ver. 2.6

59

Returns None

Description Retrieves the currently measured 3d Euler angles.

Method name virtual void getRotationMatrix(float M[3][3])

Parameters M[0..2][0..2] Rotations matrix (row i=0..2, column j=0..2)

Returns None

Description Retrievs the current rotation matrix.

Example Code (C++)

Connecting to the an LPMS device

#include "stdio.h"

#include "LpmsSensorI.h"

#include "LpmsSensorManagerI.h"

int main(int argc, char *argv[])

{

 ImuData d;

 // Gets a LpmsSensorManager instance

 LpmsSensorManagerI* manager = LpmsSensorManagerFactory();

 // Connects to LPMS-B sensor with address 00:11:22:33:44:55

 LpmsSensorI* lpms = manager->addSensor(DEVICE_LPMS_B, "00:11:22:33:44:55");

 while(1) {

 // Checks, if conncted

 if (lpms->getConnectionStatus() == SENSOR_CONNECTION_CONNECTED) {

 // Reads quaternion data

 d = lpms->getCurrentData();

 // Shows data

printf("Timestamp=%f, qW=%f, qX=%f, qY=%f, qZ=%f¥n",

d.timeStamp, d.q[0], d.q[1], d.q[2], d.q[3]);

 }

LPMS User Manual ver. 2.6

60

 }

 // Removes the initialized sensor

 manager->removeSensor(lpms);

 // Deletes LpmsSensorManager object

 delete manager;

 return 0;

}

Setting and Retrieval of Sensor Parameters

/* Setting a sensor parameter. */

lpmsDevice->setParameter(PRM_ACC_RANGE, LPMS_ACC_RANGE_8G);

/* Retrieving a sensor parameter. */

lpmsDevice->setParameter(PRM_ACC_RANGE, &p);

Sensor and Connection Status Inquiry

/* Retrieves current sensor status */

int status = getSensorStatus();

switch (status) {

case SENSOR_STATUS_RUNNING:

std::cout << "Sensor is running." << std::endl;

break;

case SENSOR_STATUS_PAUSED:

std::cout << "Sensor is paused." << std::endl;

break;

}

status = lpmsDevice->getConnectionStatus();

switch (status) {

case SENSOR_CONNECTION_CONNECTING:

LPMS User Manual ver. 2.6

61

std::cout << "Sensor is currently connecting." << std::endl;

break;

case SENSOR_CONNECTION_CONNECTED:

std::cout << "Sensor is connected." << std::endl;

break;

}

Appendix B – Common Conversion Routines

Conversion Quaternion to Matrix

typedef struct _LpVector3f {

 float data[3];

} LpVector3f;

typedef struct _LpVector4f {

 float data[4];

} LpVector4f;

typedef struct _LpMatrix3x3f {

 float data[3][3];

} LpMatrix3x3f;

void quaternionToMatrix(LpVector4f *q, LpMatrix3x3f* M)

{

 float tmp1;

float tmp2;

 float sqw = q->data[0] * q->data[0];

 float sqx = q->data[1] * q->data[1];

 float sqy = q->data[2] * q->data[2];

 float sqz = q->data[3] * q->data[3];

 float invs = 1 / (sqx + sqy + sqz + sqw);

 M->data[0][0] = (sqx - sqy - sqz + sqw) * invs;

LPMS User Manual ver. 2.6

62

M->data[1][1] = (-sqx + sqy - sqz + sqw) * invs;

 M->data[2][2] = (-sqx - sqy + sqz + sqw) * invs;

 tmp1 = q->data[1] * q->data[2];

 tmp2 = q->data[3] * q->data[0];

M->data[1][0] = 2.0f * (tmp1 + tmp2) * invs;

 M->data[0][1] = 2.0f * (tmp1 - tmp2) * invs;

 tmp1 = q->data[1] * q->data[3];

 tmp2 = q->data[2] * q->data[0];

 M->data[2][0] = 2.0f * (tmp1 - tmp2) * invs;

 M->data[0][2] = 2.0f * (tmp1 + tmp2) * invs;

 tmp1 = q->data[2] * q->data[3];

 tmp2 = q->data[1] * q->data[0];

 M->data[2][1] = 2.0f * (tmp1 + tmp2) * invs;

 M->data[1][2] = 2.0f * (tmp1 - tmp2) * invs;

}

Conversion Quaternion to Euler Angles (ZYX rotation sequence)

void quaternionToEuler(LpVector4f *q, LpVector3f *r)

{

 // ZYX Rotation sequence

 const float r2d = 57.2958f;

 float w = q->data[0];

 float x = q->data[1];

 float y = q->data[2];

 float z = q->data[3];

 float r11 = 2 * (x*y + w*z);

 float r12 = w*w + x*x - y*y - z*z;

 float r21 = -2 * (x*z - w*y);

 float r31 = 2 * (y*z + w*x);

LPMS User Manual ver. 2.6

63

 float r32 = w*w - x*x - y*y + z*z;

 r->data[2] = (float)atan2(r11, r12) * r2d;

 r->data[1] = (float)asin(r21) * r2d;

 r->data[0] = (float)atan2(r31, r32) * r2d;

}

Appendix C – LP-BUS Protocol Command List

Acknowledged and Not-acknowledged Identifiers

Identifier:

Name:

Description:

0

REPLY_ACK

Confirms a successful SET command.

Identifier:

Name:

Description:

1

REPLY_NACK

Reports an error during processing a SET command.

Firmware Update and In-Application-Programmer Upload Commands

Identifier:

Name:

Description:

Packet data:

Data format:

Response:

2

UPDATE_FIRMWARE

Start the firmware update process.

NOTE: By not correctly uploading a firmware file the sensor might

become in-operable. Please only use authorized firmware packages.

Firmware data

Firmware binary file separated into 256 byte chunks for each update

packet.

ACK (success) or NACK (error) for each transmitted packet.

Identifier:

Name:

Description:

Packet data:

3

UPDATE_IAP

Start the in-application programmer (IAP) update process.

IAP data

LPMS User Manual ver. 2.6

64

Data format:

Response:

IAP binary file separated into 256 byte chunks for each update packet.

ACK (success) or NACK (error) for each transmitted packet.

Configuration and Status Commands

Identifier:

Name:

Description:

Packet data:

Data format:

4

GET_CONFIG

Get the current value of the configuration register of the sensor. The

configuration word is read-only. The different parameters are set by

their respective SET commands. E.g. SET_TRANSMIT_DATA for

defining which data is transmitted from the sensor.

Configuration word. Each bit represents the state of one

configuration parameter.

32-bit integer

Bit Reported State / Parameter

0 - 2 Stream frequency setting (see SET_STREAM_FREQ)

3 - 8 Reserved

9 Pressure data transmission enabled (optional)

10 Magnetometer data transmission enabled

11 Accelerometer data transmission enabled

12 Gyroscope data transmission enabled

13 Temperature output enabled (optional)

14 Heave motion output enabled (optional)

15 Reserved

16 Angular velocity output enabled

17 Euler angle data transmission enabled

18 Quaternion orientation output enabled

19 Altitude output enabled (optional)

20 Dynamic magnetometer correction enabled

21 Linear acceleration output enabled

22 16-bit data output mode enabled

23 Gyroscope threshold enabled

24 Magnetometer compensation enabled

25 Accelerometer compensation enabled

26 Reserved

LPMS User Manual ver. 2.6

65

27 Reserved

28 Reserved

29 Reserved

30 Gyroscope auto-calibration enabled

31 Reserved

Identifier:

Name:

Description:

Packet data:

Data format:

5

GET_STATUS

Get the current value of the status register of the LPMS device. The

status word is read-only.

Status indicator. Each bit represents the state of one status

parameter.

32-bit integer

Bit Indicated state

0 COMMAND mode enabled

1 STREAM mode enabled

2 Reserved

3 Gyroscope calibration on

4 Reserved

5 Gyroscope initialization failed

6 Accelerometer initialization failed

7 Magnetometer initialization failed

8 Pressure sensor initialization failed

9 Gyroscope unresponsive

10 Accelerometer unresponsive

11 Magnetometer unresponsive

12 Flash write failed

13 Reserved

14 Set streaming frequency failed

15-31 reserved

Mode Switching Commands

Identifier: 6

LPMS User Manual ver. 2.6

66

Name:

Description:

Response:

GOTO_COMMAND_MODE

Switch to command mode. In command mode the user can issue

commands to the firmware to perform calibration, set parameters

etc.

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

7

GOTO_STREAM_MODE

Switch to streaming mode. In this mode data is continuously

streamed from the sensor,and all other commands cannot be

performed until the sensor receives the GOTO_COMMAND_MODE

command.

ACK (success) or NACK (error)

Data Transmission Commands

Identifier:

Name:

Description:

Data format:

9

GET_SENSOR_DATA

Retrieves the latest set of sensor data. A data packet will be

composed as defined by SET_TRANSMIT_DATA. The currently set

format can be retrieved with the sensor configuration word.

See the LP-BUS protocol explanation for a description of the

measurement data format.

Identifier:

Name:

Description:

Packet data:

Data format:

10

SET_TRANSMIT_DATA

Set the data that is transmitted from the sensor in streaming mode or

when retrieving data through the GET_SENSOR_DATA command.

Data selection indicator

32-bit integer.

Bit Reported State / Parameter

9 Pressure data transmission enabled

10 Magnetometer data transmission enabled

11 Accelerometer data transmission enabled

12 Gyroscope data transmission enabled

LPMS User Manual ver. 2.6

67

Response:

13 Temperature output enabled

14 Heave motion output enabled

16 Angular velocity output enabled

17 Euler angle data transmission enabled

18 Quaternion orientation output enabled

19 Altitude output enabled

21 Linear acceleration output enabled

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Data format:

Response:

11

SET_STREAM_FREQ

Set the timing in which streaming data is sent to the host. Please

note that high frequencies might be not practically applicable due to

limitations of the communication interface. Check the current

baudrate before setting this parameter.

Update frequency identifier

32-bit integer

Frequency (Hz) Identifier

5 5

10 10

30 30

50 50

100 100

200 200

300 300

500 500

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

75

SET_LPBUS_DATA_MODE

Sets current data mode for LP-BUS (binary) output.

Data mode identifier

LPMS User Manual ver. 2.6

68

Data format:

Response:

Int32

Data mode Identifier

32-bit float 0

16-bit integer 1

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Data format:

Response:

66

RESET_TIMESTAMP

Sets current sensor timestamp

Timestamp data (in 0.1 ms units)

Int32

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Response:

83

SET_ARM_HARDWARE_TIMESTAMP_RESET

Arms hardware timestamp reset

None

ACK (success) or NACK (error)

Register Value Save and Reset Command

Identifier:

Name:

Description:

Response:

15

WRITE_REGISTERS

Write the currently set parameters to flash memory.

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

16

RESTORE_FACTORY_VALUE

Reset the LPMS parameters to factory default values. Please note

that upon issuing this command your currently set parameters will be

erased.

ACK (success) or NACK (error)

LPMS User Manual ver. 2.6

69

Reference Setting and Offset Reset Command

Identifier:

Name:

Description:

Packet data:

Data format:

Response:

18

SET_OFFSET

Sets the orientation offset using one of the three offset methods.

Orientation offset mode

Mode Value

Object reset 0

Heading reset 1

Alignment reset 2

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

82

RESET_ORIENTATION_OFFSET

Reset the orientation offset to 0 (unity quaternion).

ACK (success) or NACK (error)

Self-Test Command

Identifier:

Name:

Description:

Response:

19

SELF_TEST

Initiate the self-test. During the self test the sensor automatically

rotates about the three room axes. To simulate realistic

circumstances an artificial offset is applied to the magnetometer and

the gyroscope values.

ACK (success) or NACK (error)

IMU ID Setting Command

Identifier:

Name:

Description:

Packet data:

Data format:

Response:

20

SET_IMU_ID

Set the OpenMAT ID.

OpenMAT ID

32-bit integer

ACK (success) or NACK (error)

LPMS User Manual ver. 2.6

70

Identifier:

Name:

Description:

Packet data:

Return format:

21

GET_IMU_ID

Get the ID (OpenMAT ID) of the device.

The ID of the IMU device

32-bit integer

Gyroscope Settings Command

Identifier:

Name:

Description:

Response:

22

START_GYR_CALIBRATION

Start the calibration of the gyroscope sensor.

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

23

ENABLE_GYR_AUTOCAL

Enable or disable auto-calibration of the gyroscope.

Gyroscope auto-calibration enable / disable identifier

32-bit integer

State Value

Disable 0x00000000

Enable 0x00000001

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

24

ENABLE_GYR_THRES

Enable or disable gyroscope threshold.

Gyroscope threshold enable / disable identifier

32-bit integer

State Value

Disable 0x00000000

Enable 0x00000001

ACK (success) or NACK (error)

LPMS User Manual ver. 2.6

71

Identifier:

Name:

Description:

Packet data:

Format:

Response:

25

SET_GYR_RANGE

Set the current range of the gyroscope.

Gyroscope range identifier

32-bit integer

Range (deg/s) Identifier

250 250

500 500

2000 2000

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

26

GET_GYR_RANGE

Get current gyroscope range.

Gyroscope range indicator

32-bit integer

Identifier:

Name:

Description:

Packet data:

Format:

Response:

48

SET_GYR_ALIGN_BIAS

Set gyroscope alignment bias.

Gyroscope alignment bias

Float 3-vector

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

49

GET_GYR_ALIGN_BIAS

Get gyroscope alignment bias.

Gyroscope alignment bias

Float 3-vector

LPMS User Manual ver. 2.6

72

Identifier:

Name:

Description:

Packet data:

Format:

Response:

50

GET_GYR_ALIGN_MATRIX

Set gyroscope alignment matrix.

Gyroscope alignment matrix

Float 3x3 matrix

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

51

GET_GYR_ALIGN_MATRIX

Get gyroscope alignment matrix.

Gyroscope alignment matrix

Float 3x3 matrix

Accelerometer Settings Command

Identifier:

Name:

Description:

Packet data:

Format:

Response:

27

SET_ACC_BIAS

Set the accelerometer bias.

Accelerometer bias (X, Y, Z-axis)

32-bit integer encoded float 3-component vector

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

28

GET_ACC_BIAS

Get the current accelerometer bias vector.

Accelerometer bias vector

32-bit integer encoded float 3-component vector

Identifier:

Name:

Description:

Packet data:

Format:

29

SET_ACC_ALIG

Set the accelerometer alignment matrix.

Alignment matrix

32-bit integer encoded float 3 x 3 matrix

LPMS User Manual ver. 2.6

73

Response: ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

30

GET_ACC_ALIG

Get the current accelerometer alignment matrix.

Accelerometer alignment matrix

32-bit integer encoded float 3 x 3 matrix

Identifier:

Name:

Description:

Packet data:

Format:

Response:

31

SET_ACC_RANGE

Set the current range of the accelerometer.

Accelerometer range identifier

32-bit integer

Range Identifier

2g 2

4g 4

8g 8

16g 16

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

32

GET_ACC_RANGE

Get current accelerometer range.

Accelerometer range indicator

32-bit integer

LPMS User Manual ver. 2.6

74

Magnetometer Settings Command

Identifier:

Name:

Description:

Packet data:

Format:

Response:

33

SET_MAG_RANGE

Set the current range of the magnetometer.

Magnetometer range identifier

32-bit integer

Range Identifier

130 uT 130

190 uT 190

250 uT 250

400 uT 400

470 uT 470

560 uT 560

810 uT 810

Identifier:

Name:

Description:

Response:

Return format:

34

GET_MAG_RANGE

Get current magnetometer range.

Magnetometer range indicator (same as above)

32-bit integer

Identifier:

Name:

Description:

Packet data:

Format:

Response:

35

SET_HARD_IRON_OFFSET

Set the current hard iron offset vector.

Hard iron offset values

32-bit integer encoded 3-element float vector

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

36

GET_HARD_IRON_OFFSET

Get current hard iron offset vector.

Hard iron offset values

32-bit integer encoded 3-element float vector

LPMS User Manual ver. 2.6

75

Identifier:

Name:

Description:

Packet data:

Format:

Response:

37

SET_SOFT_IRON_MATRIX

Set the current soft iron matrix.

Soft iron matrix values

32-bit integer encoded 9-element (3x3) float matrix

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

38

GET_SOFT_IRON_MATRIX

Get the current soft iron matrix.

Soft iron matrix values

32-bit integer encoded 9-element (3x3) float matrix

Identifier:

Name:

Description:

Packet data:

Format:

Response:

39

SET_FIELD_ESTIMATE

Set the current earth magnetic field strength estimate.

Field estimate value in uT

32-bit integer encoded float

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

40

GET_FIELD_ESTIMATE

Get the current earth magnetic field strength estimate.

Field estimate value in uT

Int32

Identifier:

Name:

Description:

Packet data:

76

SET_MAG_ALIGNMENT_MATRIX

Sets the magnetometer misalignment matrix.

Misalignment matrix

LPMS User Manual ver. 2.6

76

Format:

Response:

Matrix3x3f

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

77

SET_MAG_ALIGNMENT_BIAS

Sets the magnetometer misalignment bias.

Misalignment bias

Vector3f

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

78

SET_MAG_REFRENCE

Sets the magnetometer reference vector.

Misalignment matrix

Vector3f

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

79

GET_MAG_ALIGNMENT_MATRIX

Gets magnetometer misalignment matrix.

Misalignment matrix

Matrix3x3f

Identifier:

Name:

Description:

Response:

Return format:

80

GET_MAG_ALIGNMENT_BIAS

Gets magnetometer misalignment bias.

Misalignment bias

Vector3f

Identifier:

Name:

81

GET_MAG_REFERENCE

LPMS User Manual ver. 2.6

77

Description:

Response:

Return format:

Gets magnetometer reference.

Magnetometer reference vector

Vector3f

Filter Settings Command

Identifier:

Name:

Description:

Packet data:

Format:

Response:

41

SET_FILTER_MODE

Setthe sensor filter mode.

Mode identifier

32-bit integer

Mode Value

Gyroscope only 0x00000000

Accelerometer + gyroscope 0x00000001

Accelerometer+ gyroscope+

magnetometer

0x00000002

Accelerometer +

Magnetometer (Euler angle based

filtering)

0x00000003

Accelerometer +

Gyroscope (Euler angle-based filtering)

0x00000004

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

42

GET_FILTER_MODE

Get the currently selected filter mode.

Filter mode identifier

32-bit integer

Mode Value

Gyroscope only 0x00000000

Accelerometer + gyroscope 0x00000001

Accelerometer + gyroscope +

magnetometer

0x00000002

LPMS User Manual ver. 2.6

78

Identifier:

Name:

Description:

Packet data:

Format:

Response:

43

SET_FILTER_PRESET

Set one of the filter parameter presets.

Magnetometer correction strength preset identifier

32-bit integer

Preset Value

Dynamic 0x00000000

Strong 0x00000001

Medium 0x00000002

Weak 0x00000003

Identifier:

Name:

Description:

Response:

Return format:

44

GET_FILTER_PRESET

Get the currently magnetometer correction strength preset

Magnetometer correctionstrength preset identifier

32-bit integer

Correction strength Value

Dynamic 0x00000000

Strong 0x00000001

Medium 0x00000002

Weak 0x00000003

Identifier:

Name:

Description:

Packet data:

Format:

60 (deprecated)

SET_RAW_DATA_LP

Set raw data low-pass

Low pass strength

Float

Cutoff frequency Value

Off 0x00000000

40 Hz 0x00000001

20 Hz 0x00000002

4 Hz 0x00000003

LPMS User Manual ver. 2.6

79

Response:

2 Hz 0x00000004

0.4 Hz 0x00000005

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

61 (deprecated)

GET_RAW_DATA_LP

Get raw data low-pass

Low pass strength

Float

Identifier:

Name:

Description:

Packet data:

Format:

Response:

67

SET_LIN_ACC_COMP_MODE

Sets linear acceleration compensation mode.

Mode identifier

State Value

Off 0x00000000

Weak 0x00000001

Medium 0x00000002

Strong 0x00000003

Ultra 0x00000004

32-bit integer

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

68

GET_LIN_ACC_COMP_MODE

Gets linear acceleration compensation mode.

Mode identifier

State Value

Off 0x00000000

Weak 0x00000001

Medium 0x00000002

Strong 0x00000003

LPMS User Manual ver. 2.6

80

Return format:

Ultra 0x00000004

32-bit integer

Identifier:

Name:

Description:

Packet data:

Format:

Response:

69

SET_CENTRI_COMP_MODE

Sets centripetal acceleration compensation mode.

Mode identifier

State Value

Disable 0x00000000

Enable 0x00000001

32-bit integer

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

70

GET_CENTRI_COMP_MODE

Gets centripetal acceleration compensation mode.

Mode identifier

32-bit integer

State Value

Disable 0x00000000

Enable 0x00000001

UART Settings Commands

Identifier:

Name:

Description:

Packet data:

Format:

Response:

84

SET_UART_BAUDRATE

Sets the current UART baud rate.

Baud rate data

Int32

Baud rate Identifier

19200 0

57600 1

115200 2

921600 3

ACK (success) or NACK (error)

LPMS User Manual ver. 2.6

81

Identifier:

Name:

Description:

Response:

Return format:

85

GET_UART_BAUDRATE

Gets current UART baud rate.

Baud rate identifier

32-bit integer

Identifier:

Name:

Description:

Packet data:

Format:

Response:

86

SET_UART_FORMAT

Sets UART communication format,

Communication format identifier

Int32

Format Identifier

Binary 0

ASCII 1

ACK (success) or NACK (error)

CAN Bus Settings Command

Identifier:

Name:

Description:

Packet data:

Format:

46

SET_CAN_BAUDRATE

Sets CAN baud rate.

Baud rate identifier

Int32

Correction strength Value

10Kbit/s 0x00

20Kbit/s 0x08

50Kbit/s 0x10

125Kbit/s 0x18

250Kbit/s 0x20

500Kbit/s 0x28

800Kbit/s 0x30

1Mbit/s 0x38

LPMS User Manual ver. 2.6

82

Response: ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

62

SET_CAN_MAPPING

Sets CANopen data format mapping.

The mapping data consists of 8 integer words. Each of these words

represents the assignment of half a CANopen transmission object /

message (TPDO) to specific sensor data.

Int32

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

63

GET_CAN_MAPPING

Gets CANopen mapping.

Mapping identifier

Int32

Identifier:

Name:

Description:

Packet data:

Format:

Response:

64

SET_CAN_HEARTBEAT

Sets CANopen heartbeat frequency

Frequency identifier

Int32

Heartbeat frequency Identifier

5Hz 0x00000000

1Hz 0x00000001

0.5Hz 0x00000002

0.2Hz 0x00000003

0.1Hz 0x00000004

ACK (success) or NACK (error)

Identifier:

Name:

65

GET_CAN_HEARTBEAT

LPMS User Manual ver. 2.6

83

Description:

Response:

Return format:

Gets CAN heartbeat frequency

Int32

Heartbeat frequency Identifier

5Hz 0x00000000

1Hz 0x00000001

0.5Hz 0x00000002

0.2Hz 0x00000003

0.1Hz 0x00000004

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Response:

Return format:

71

GET_CAN_CONFIGURATION

Sets the current CAN channel mode.

Channel mode identifier

Int32

Channel mode Identifier

Sequential mode 0x00000001

CANopen mode 0x00000002

Identifier:

Name:

Description:

Packet data:

Format:

Response:

72

SET_CAN_CHANNEL_MODE

Sets the current CAN channel mode.

Channel mode identifier

Int32

Channel mode Identifier

Sequential mode 0x00000001

CANopen mode 0x00000002

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

73

SET_CAN_POINT_MODE

Sets the current CAN point mode.

Point mode identifier

LPMS User Manual ver. 2.6

84

Format:

Response:

Int32

Channel mode Identifier

32-bit float mode 0x00000001

16-bit integer mode 0x00000002

ACK (success) or NACK (error)

Identifier:

Name:

Description:

Packet data:

Format:

Response:

74

SET_CAN_START_ID

Sets current CAN message start ID.

Start ID

Int32

ACK (success) or NACK (error)

LPMS User Manual ver. 2.6

85

Appendix D – Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with LP-Research products. LP-

Research reserves the right to make changes, corrections, modifications or improvements,

to this document, and the products and services described herein at any time, without notice.

All LP-Research products are sold pursuant to LP-Research’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the LP-Research

products and services described herein, and LP-Research assumes no liability whatsoever

relating to the choice, selection or use of the LP-Research products and services described

herein.

UNLESS OTHERWISE SET FORTH IN LP-RESEARCH’S TERMS AND CONDITIONS OF

SALE LP-RESEARCH DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH

RESPECT TO THE USE AND/OR SALE OF LP-RESEARCH PRODUCTS INCLUDING

WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY

JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

LP-RESEARCH PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR

WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE

SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR

MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY

OR ENVIRONMENTAL DAMAGE. LP-RESEARCH PRODUCTS WHICH ARE NOT

SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE

APPLICATIONS AT USER’S OWN RISK.

© 2020 LP-Research - All rights reserved

Tokyo – Guangzhou

www.lp-research.com

