About Klaus Petersen

I like to create magical things, especially projects related to new technologies like augmented and virtual reality, mobile robotics and MEMS-based sensor networks. I code in C(++) and Python, trying to keep up with my very talented colleagues :-)

LPMS Operator’s Manual Update

It’s been a long time, but finally we have updated our reference manual to the latest generation of sensors.

The manual is accessible through our documentation & support page or directly from here.

Below is a list of the most important updates, some of which are fixes that customers have asked for for quite a while:

  • Removed hardware specific parts. These are now covered in the quick start manuals.
  • Corrected scaling factors for all non-floating-point data transmission modes.
  • Corrected error in description of reset modes.
  • Moved to-be-deprecated LpSensor detail description to appendix.
  • Added list with APIs for direct sensor programming. OpenZen is to replace LpSensor.

iOS Support for LPMS-B2

LPMS-B2, besides Bluetooth classic, also supports Bluetooth 4 / Bluetooth Low Energy. This allows us to connect the sensor to Apple mobile devices such as the iPad, iPhone or the Apple watch. We recently have created a library that enables development of applications supporting LPMS-B2 on these devices.

The library can be accessed via our open source repository.

The repository contains a skeleton application that shows usage of the most basic parts of the library. The library itself is contained in the following files:

LpmsB2.m
LpmsB2.h
LpmsBData.m
LpmsBData.h

A sensor object is initialized and connected using the follwoing code:

#import "LpmsB2.h"
#import "LpmsBData.h"
..
CBPeripheral *peripheral;
CBCentralManager *centralManager;
..
LpmsB2 *myLpmsB2;
myLpmsB2 = [[LpmsB2 alloc] init];
[myLpmsB2 connect:centralManager Address:peripheral];

More coming soon..

LPVR Manual & VIVE Pro Holder Prototype

LPVR Quick Start Guide

We have written a quick start guide for the LP VR system. The guide describes the assembly of the VIVE marker holder and the installation/usage of the LPVR SteamVR driver. The guide at the moment doesn’t contain information about the new VIVE Pro holder, but this will be added later.

Download the guide from here: LpvrGettingStarted20180402.pdf

VIVE Pro Sensor Holder

We have been working on the development of a optical marker/sensor holder for the VIVE Pro for a few weeks. It is not completely finished yet, but below is a photo of a prototype.

VIVE Pro with IMU and markers

LP Sensors at Bandai Namco VR Zone: Ghost in the Shell VR Experience

Shinjuku VR Zone logo

Recently Bandai Namco has opened a VR entertainment center in central Tokyo, titled the VR Zone. One part of VR Zone is a revolutionary new free-roaming arcade experience built on the theme of anime classic Ghost in the Shell.

VR Zone group photo

LP-RESEARCH has provided IMU technology that allows the system to operate with the HTC VIVE. The result is a uniquely fascinating and fun arcade experience. Our team was very happy to test the experience before the official openning of VR Zone and greatly enjoyed it. VR at its finest, highly recommended!

IMU-based Dead Reckoning (Displacement Tracking) Revisited

In a blog post a few years ago, we published results of our experiments with direct integration of linear acceleration from our LPMS-B IMU. At that time, although we were able to process data in close to real-time, displacement tracking only worked on one axis and for very regular up-and-down motions.

In the meantime the measurement quality of our IMUs has improved and we have put further work into researching dead reckoning applications. Fact is that still, low-cost MEMS as they are used in our LPMS-B2 devices are not suitable to perform displacement measurement for extended periods of time or with great accuracy. But, for some applications such as sports motion measurement or as one component in a larger sensor fusion setup, the results are very promising.

A further experiment shows this algorithm applied to the evaluation of boxing motions. This system might work as a base component for IoT boxing gloves that allow automatic evaluation of an athletes technique and strength, or it might ne integrated into an advanced controller for virtual reality sports.

As usual, please contact us for further information.

1 2 3 4 5 6 10